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SECTION I

INTRODUCTION

1.1 PASSIVE ACOUSTIC AIRBORNE ASW

The airborne ASW tracking problem is becoming progressively more diffi-

r. cult every year. The continued efforts of our adversaries toward quieter,

faster assets with longer ranged weapons imply the need for more powerful

localization and tracking systems able to extract maximum information from

lower signal strengths and to obtain fire control solutions as quickly as

* possible. Current systems work by extracting bearing and Doppler information

9* "'" from narrow band signals and then using this information in Extended Kalman

. .filter tracking algorithms. To operate successfully such systems require a

stable narrow band line and relatively high signal-to-noise ratio (narrow band

- signal strength to background noise strength). Unfortunately, these require-

ments are becoming increasingly more difficult to satisfy as targets become

-quieter.

Several new sensors planned for the future (e.g., various types of array

buoys) will help prolong the usefulness of current tracking systems, but it

7 is clear that within very few years new tracking systems will be required to

exploit many different types of measurements and to operate at lower SNR

levels than possible with current systems. W-
0;.

The key mathematical problem of passive ASW localization and tracking

is the estimation of the state of time-varying stochastic processes given

*l !
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nonlinear rreasurements with low SNR. A theoretical framework does exist for

such problems, at least at the abstract level, in the current theory of non-

linear estimation. Unfortunately, this theory has very little to say at the

practical, computational level about nonlinear problems in general. Neverthe-

less, useful theoretical results are possible for nonlinear filtering problems

if additional mathematical structure is present, and we believe that the pas-

sive tracking problem of airborne ASW does have significant special structure

to exploit. The research d!.scussed here identifies one type of special struc-

ture (time-scale perturbation) and shows how to exploit it to design improved

passive tracking systems.

1 .2 CONVENTIONAL VERSUS INTEGRATED SYSTEM ARCHITECTURE

Current passive acoustic tracking systems work by extracting target

parameters (such as time delay or Doppler shift of a narrow band emission)

from a raw signal and then processing those parameters to obtain estimates of

target parameters of interest (position and velocity). These two types of

processing are referred to as signal processing and tracking. Conventional

system designs assume that signal processing and tracking can be performed

sequentially (see Fig. 1-1 from [1]). The front-end signal processor is usu-

ally designed assuming that target parameters are constant over time; the

back-end tracker is designed assuming that the parameter estimates output from

the signal processor are direct measurements of the true parameter values with

the addition of uncorrelated measurement noise.

These design assumptions are based on the physical nature of observation

and target processes: that is, a slowly varying target process modulates a

* rapidly varying observation process. Thus, the conventional system design r

2
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RECEIVING TRANSDUCER ARRAY]
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STATISTICS PROCESSOR BACK END
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OPERATOR DISPLAY

OPERATOR INTERACTION

OPERATOR DECISION
R-5450

Figure 1-i. Generic Passive Sonar Processing System

(Knight, Pridham, Kay, 1981)

inverts the physical model -- i.e., a fast signal processor modulates a slow

t filter. However, these design assumptions are only approximations

and the segmented system is only an approximation of the optimal processor for

3
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extracting target tracks from the raw acoustic sensor data. In an ideal world

with unlimited computational and data transmission resources, one would design

an optimal, totally integrated tracking system that takes in raw hydrophone

signals from every sonobuoy and outputs target position and velocity estimates

(Fig. 1-2).

HYDROPHONE TARGET POSITIONS
SIGNALS INTEGRATED AND VELOCITIES

PPOCESSOR

R-1249

Figure 1-2. Optimal, Integrated Processing System Architecture

We know what the optimal design is -- it is the implementation of Bayes

rule. One way to realize this optimal algorithm is to discretize the

continuous-valued variables and treat the problem as a finite state Markov

estimation problem. As the discretization becomes more refined, this approx-

imation comes closer to the optimal Bayesian algorithm. Unfortunately, the

computational complexity also increases so rapidly that it quickly overwhelms

any imaginable processor for all but problems of small dimensions (at most 2

J. or 3). Numerical and processor work on this problem is still advancing [2]

but it is clear that this completely optimal, totally integrated approach will

have to be use2 in conjunction with methods that decompose large dimensional

problems into a collection of small dimensional problems which can be solved

separately and then recombined to obtain a tractable solution to the overall

high dimensional problem.

Such decompositions define corresponding system architectures, i.e., a

collection of components (which solve the small dimensional subproblems)

4
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i . together with the inputs and outputs of each component (and thus, connections

between components). For example, Fig. 1-3 shows a typical passive tracking

system architecture with two components, a front-end signal processor that

estimates bearing and frequency lines from raw measurements and a back-end

tracking algorithm that estimates position and velocity from bearing and fre-

quency inputs. Figure 1-4 shows another system architecture. It adds a feed-

back connection from the back-end tracker to the front-end signal processor.

This feedback can enhance the signal processing by providing estimates of

expected Doppler shift and bearing to the front end. However, if the tracker

back end is producing poor position and velocity estimates, this feedback may

in fact worsen the performance of the front-end signal processor. How does the

system of Fig. 1-4 decide when to switch feedback on or off? More generally,

how does one decide which architecture is the best one to use in a particular

situation? Are frequency and bearing outputs the best ones to provide to the

back-end tracker in Fig. 1-4? If the architecture of Fig. 1-4 is used, what

is the best feedback information that the back-end tracker can provide the

front-end signal processor in order to tell the front end when it should and

when it should not use this information to enhance its signal processing? The

objective of this research is to show that we can apply stochastic perturba-

tion theory to answer such questions as these in a precise, systematic manner.

HYDROPHONE RECEIVED FREQUENCIES TARGET POSITIONS
SIGNALS FRONT-END AND BEARINGS AND VELOCITIES

PROCESSOR PROCESSOR ON

6
R-1248

Figure 1-3. Suboptimal, Segmented Processing System Architecture

5
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PREDICTED DOPPLER SHIFT
AND BEARING

IHYDROPHONE RECEIVED FREQUENCIES TARGET POSITIONS
SIGNALS NT-END AND BEARINGS BACK-END AND VELOCITIES

PROCESSOR PROCESSOR

R-1248-1

Figure 1-4. Segmented Processing System Architecture with Feedback

1.3 FILTERING PROBLEMS WITH TIME SCALES

Our objective is to employ some systematic mathematical methods to iden-

tify architectures (that is, components, inputs, and outputs) which perform

close to optimal, totally integrated systems. Our approach to doing this is

to formulate the complete tracking problem as a mathematical estimation prob-

lem, identify perturbation parameters in the mathematical model, use methods

of stochastic perturbation theory to decompose the estimation problem, and

Iinterpret the decomposition in terms of a corresponding system architecture.

4 .The specific perturbation parameter we will exploit in this work is the

r2 ratio of the signal time constant to the target time constant which is often

small. The conventional segmented signal processing and tracking system is an

approximation based on this time-scale separation. The goal of our research

is to obtain time-scale approximations of optimal filters systematically and

rigorously from a mathematical analysis of the equations modeling the target

and signal.

6

or V



ALPHATECH, INC.

1.4 SIGNIFICANCE OF PERTURBATION METHOD

We have mentioned only one kind of perturbation (namely time-scale per-

turbation) so far, but we believe that several other useful perturbations can

be identified in the mathematical models used in passive acoustic tracking.

" In this subsection we will discuss the significance of developing architecture

decomposition methods based on stochastic perturbation theory.

1.4.1 Computation Reduction

S As we noted at the beginning of this section, the purpose of this method

is to decompose high dimensional problems into Lractable lower dimensional

problems. What is significant is that perturbation theory provides a system-

atic, general way of doing this. Moreover, this approach provides decomposi-

tions which are small perturbations of the optimal, totally integrated system.

How much performance loss results depends on the size of the perturbation

parameter. Although quantitative performance analysis is far from easy even

in these cases, the method does provide an approach to identifying decompo-

sitions which promise minimal loss of performance.

1.4.2 Hierarchies of Architectures

'The perturbation method also naturally provides hierarchical families of

% architectures in terms of asymptotic expansions of optimal solutions. That

is, one can identify the simplest architectures resulting from assuming that

the perturbation parameters are negligible, but also one can identify more

complex architectures which may also have better performance when the perbur-

bation parameter is not negligible. For example, it seems likely that the

architecture shown in Fig. 1-3 is a zero-order approximation of the optimal

7
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." system when the perturbation parameter is negligible. We also conjecture that

some variation of the architecture shown in Fig. 1-4 is a first-order approx-

imation of the optimal system. What we do not know is what the exact feedback

information should be in Fig. 1-4, but we expect stochastic perturbation

theory to give us the precise answer.

1.4.3 Nonintuitive Architectures

In many problems experienced, intuition suffices to determine zero-order

and sometimes high order perturbation approximations. Perturbation theory is

much more complicated for stochastic problems, and we believe that a system-

atic, mathematical method such as we propose will have a tremendous advantage

over unaided intuition. Reference [3] gives some examples of nonintuitive

stochastic perturbation results.

1.4.4 Reduction to Component Design

The object of architecture decomposition is to reduce the problem of

designing a tracking system to that of designing simpler components which are

connected together as specified by the architecture. Architecture decomposi-

tion will specify these components in terms of an estimation subproblem that

the component needs to solve. The solution of the subproblem would generally

' .<be determined by other methods, and in many cases it may happen that methods

* already exist for solving these subproblems. Thus, the architecture decom-

N' position shows how to utilize these existing results in a unified tracking

! .~system to solve the problem at hand. For example, architecture decomposition

Oi would indicate that the narrowband problem above has the architecture of

Fig. 1-3. This architecture would specify the frontend only as something

W8
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which tries to estimate constant frequency and bearing from hydrophone data.

, The system designer is then free to note that there already exist various

solutions to that problem (e.g., maximum likelihood estimators or maximum

entropy methods) and would substitute the appropriate module in his system.

If the architecture indicates that this subproblem is particularly difficult

p(for example, the architecture analysis might indicate that the subproblem

involves a low signal-to-noise ratio), then the system designer would know he

should search for a more sophisticated front end.

1 .5 OVERIVEW OF REPORT

Section 2 of this report describes nonlinear filtering models for passive

acoustic tracking which we will use as a basis for our study of time-scale

approximations and filter architectures. Section 3 briefly reviews the funda-

mentals of stochastic estimation for dynamical systems in terms of stochastic

differential equations. In Section 4 we review previous work on problems sim-

ilar to ours in the areas of singular estimation and control, and singularly

perturbed estimation and control. Section 5 then contains a discussion of

existing techniques for the type of perturbation problem arising in passive

3acoustic tracking; this section discusses several filter architectures that

are implied by the different techniques reviewed in Se-:tion 4. One of the

conclusions of this section is that there are essentially no existing results

A ".' for the class of models that includes those arising in passive ASW tracking.

The remainder of the report then deals with the development of such results.

In Section 6 we introduce two relatively simple nonlinear filtering problems

. possessing the same qualitative features found in passive ASW problems. We

also motivate and define a number of approximate solutions to these problems

9
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and discuss their architectural implications. Section 7 contains the theo-

retical analysis of one of these approximations that provides a precise rela-

tionship between process time scales and measurement quality. The extensive

simulations in Section 8 not only support the result of Section 7 but also

lead to a number of additional conclusions including several concernirg the

structure and asymptotic properties of front-end/back-end architectures.

The body of the report then concludes with a brief review and discussion in

Section 9. Appendix A, B, and C contain technical derivations pertinent to

Sections 2, 3, and 6, respectively.

11
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U
SECTION 2

PASSIVE ACOUSTIC TRACKING MODELS

2.1 INTRODUCTION

This section will describe a model for passive acoustic tracking prob-

4 lems, which has been used for passive tracking algorithms in the past and is

useful for applying the nonlinear filtering approach we are taking. The basic

simplifying assumption is that acoustic signals travel in straight lines from

transmitter to receiver at a constant speed. From this assumption, we develop

simple models for source and sensor motion effects, source aspect angle depen-

dence, sensor directivity, and attentuation. To be sure, sound propagation in

the ocean is much more complex than the model of it presented here [4]. But

including a more realistic model of sound propagation, although possible, is

well beyond the scope and needs of this research. The model presented here

has been sufficient to guide and test our research into new methods of com-

e, bined s.gnal processing and tracking which may prove useful for practical

S..passive acoustic tracking.

2.2 TIME DELAY, DOPPLER EFFECT, AND SOURCE-SENSOR MOTION

Define the following notation (see Fig. 2-1):* xT(t) = Transmitter location at time t;

xR(t) = Receiver location at time t;

YT(t) = Signal transmitted at time t;

- YR(t) = Signal received at time t.

- W1 %
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TRANSMITTED SIGNALyTt-)
XTY tt)

FTSOURCE TT (t

C'C =XT(t - r) - ~t)j

SENSOR xR(t) RECEIVED SIGNAL yR(t) =YT(t-T)

XR(t)
R-5451

Figure 2-1. Time Delay Geometry
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Define T(t) implicitly as

v(t) = Delay in signal received at time t;

i1 IxT~t-T(t)) -xR(t)1

The basic relationship between YT and YR in this case is

YR(t) = YT(t-T(t)) . (2-2)

The time derivative ; of the time delay T and the Doppler effect factor 1-T

are of particular interest. These are given by the following equations

obtained by implicit differentation of Eq. 2-1:

N1

<XT(t-T) - XR(t),XT(t-T) - XR(t)>

(2-3)

IXTtT) 2~Rt~tc xT(t-T) -xR C),x(t-)j

c~ ~ ~ <XT~t-t) - XRMIt XT(t-T) xR t)>

where < , > denotes the inner product of vectors, and

S<xT(t-T) -XR(t)'XR(t-T)>]

1i (2-4)

<xT(t-r) - XR(t),XT(t-T)>1

+ c IxT(tT) - XR(t)j

If the sensor is motionless, then Eqs. 2-3 and 2-4 reduce to

<XT(t-T) - XR,XT(t-T)>
T (2-5)

ct -X L +<xT(t-T) - XR,XT(t-)>
. .. c Ixr(t-T) - xR] + c +x ~ -T,- =C XT(t-1) - XRI

13
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= 1(2-6)

F XT(t-T) -XR,XT(t-T)
7 ]

m~~ + XT(t-T) - XR1

If the target is motionless, then Eqs. 2-3 and 2-4 reduce to

_ <xT - xR(t),XR(t)>
= ,(2-7)

c IXT - XR(t)I

+ <xT - XR(t),XR(t) (2-8)

c IxT - XR(t)1

The time delay model presented here in Eq. 2-2 is an approximation to

the exact solution of the three-dimensional wave equation for a moving point

source. The exact solution for the case of a stationary receiver (xR = 0) is

derived in Appendix A and is given by

YR(t) = Yr(t-T) • ( ) (2-9)
CT

where yT(t) is the sound pressure level at the point source and yR(t) is the

sound pressure level at the receiver.

2.3 ATTENUATION

Real signals are attenuated as they propagate. Such effects can be added

Iin the time delay model by defining an attenuation function

A(xT,xR) = ratio of transmitted to received
signal amplitude for transmitter
at xT and receiver at xR.

The corresponding received signal model is

YR(t) = A(xT(t-T),xR(t)) YT(t-T) (2-10)

14
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The attenuation function might satisfy a power law

A(xT,xR) = IXT - XRIY (2-li)

where y = -2 for spherical spreading (propagation in three dimensions), '= -1

for cylindrical spreading (propagation in two dimensions), or something in

between (-2 < y < -i). Urick [4] notes some values of y to use in the sonar

propagation loss function (which is essentially what is being modeled).

SNote that the exact solution (Eq. 2-9) for the homogeneous three-

dimensional case includes the geometric attenuation due to spherical spreading

(the factor appears only as (cT)-1 = r- I attenuation of sound pressure level).

2.4 ASPECT DEPENDENCE

Figure 2-2 shows the geometry of aspect dependence of the transmitted

signal YT" Note that in this section we assume that receiver and transmitter

are moving in a plane. The notation is
Fe

xT(t) - Transmitter location at time t;

:xR(t) = Receiver location at time t;

-i ! YT(t) = Signal transmitted at time t;

yR(t) = Signal received at time t;

*a(t) = Acoustic (delayed) aspect angle
, 'i of target at time t;

T(t) = Delay in signal received at time t;

g( ) = Directivity of transmitted signal
relative to target heading.

The transmitted and received signals are related by

YRM(t) = g( a(t)) Yr(t-T) (2-12)

15
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BEAM PATTERN g(o)

SOURCE X T(t'r)

: , : . Oa(t)

YR(t) = g(4a(t)) YT(t-T)

SENSOR,. . .- ,':' R(t)

R-5452

Figure 2-2. Aspect Dependence
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Note that 0 satisfies

V _ <xT(t-T) - XR(t),XT(t-T)>
cos(a t .=(2-13)
cos(oa(t)) = IxT(t-T) - XR(t)I IT(t-T)l

If the source transmits several different signals YT,k with different direc-

tivity functions gk, then the received signal is the superposition of signals

(Eq. 2-12). That is,

n

YR(t) = I gk(Oa(t)) YT,k(t-T) . (2-14)
k=l

To treat transmitters and receivers moving in three dimensions, define

bd(t) = delayed bearing directional vector at time t,

XT(t-T) - XR(t)

IXT(tLT) - XR(t)I

vT(t) = target heading directional vector at time t,

xT( t)

: lIXT( t) I

1 . The source directivity g should be a function of b and VT so that the received

; signal is given by

YR(t) = g(bd(t),vT(t-T)) yT(t-T) - (2-15)

-%J '-

If the receiver is motionless, then the delayed bearing is related to the

- instantaneous bearing by the equation

bd(t) b(t-T) (2-16)

where b(t) is defined as

17
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b(t) = instantaneous directional bearing vector,

XT(t) - xR

IXT(t) - XR1

2.5 SENSOR DIRECTIVITY

Sensor directivity can be treated similar to aspect angle dependence.

Figure 2-3 shows the geometry; as in the previous section, we assume that

receiver and transmitter are coplanar. Define the notation

xT(t) = Transmitter location at time t;

k xR(t) = Receiver location at time t;

yT(t) = Signal transmitted at time t;

YR(t) = Signal received at time t;

aa(t) = Acoustic (delayed) bearing angle
to target at time t;

T(t) = Delay in signal received at time t;

h(o) = Directivity of received signal
relative to receiver velocity
or fixed reference direction.

The relation between transmitted and received signals is similar to Eq. 2-12:

~YRMt = h(Oa(t)) YT(t-T) .(2-17)

SiNote that 8a satisfies

Q <xT(t-T ) - XR(t) ,xR ( t )>

cos(aa(t)) - (218)
- IXT(t-T) - XR(t)j IR(t)I

If the receiver is not moving, replace xR by a reference vector in Eq. 2-18.

A source transmitting multiple signals is modeled by

"' n

yR(t) h(aa(t)) I YT,k(t-T) . (2-19)
k=l

18
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XT(t-)
--, . SOURCE4 X T(tI)

J'.

XaRt ) OR REFERENCE
, -. DIRECTION

.. z.. :. .R-5453

Figure 2-3. Sensor Directivity
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.'. " 2.6 NOISE MODEL

In this section we will only present a model for ambient background

noise, which we model as an additive noise term in the equation for the

received signal. Define

V n(t) = Ambient background noise near the

receiver at time t;

YT(t) = Signal transmitted at time t;

* YR(t) = Signal received at time t;

rT(t) = Delay in signal received at time t;
relative to receiver velocity or

fixed reference direction.

The relationship between the received signal and the transmitted signal and

background noise is given by

* VYR(t) = YT(t-T) + n(t) . (2-20)

Note that the noise process n(t) in Eq. 2-20 is not delayed since it does not

originate from the target. Note also that nothing is said about how n(t)

depends on the receiver location. One can include a model of the correlation

such as

E{nl(t)n 2 (s)} R(xl(t)-x 2 (s),t-s) (2-21)

for two receivers of the same type located at xi and x2 .

2.7 EXAMPLE

To il]ustrate the time delay model described above, consider a single

source moving with constant velocity and emitting a narrowband signal. The

source trajectory satisfies the differential equation.

20
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d 2XT
- = 0 (2-22)

dt
2

The source signal satisfies the stochastic differential equation

dOT = f dt + a dw (2-23)

where f is the constant source frequency, w is a standard Wiener process, and

the transmitted signal is

YT(t) = sin OT(t) . (2-24)

The signal YT is a (wide-sense) stationary process with total power 1/2 and

two-sided power spectral density at frequency w given by

- + f2 + w2
'.-.G2 

4
42 T. (2-25)

+ (f-w)21L + (f+.)2]

This expression represents a spectrum with peak at frequency f (or f and -f

for the two-sided spectrum) and width proportional to a2.

Now suppose that there is a motionless sensor located at xR. Consider

a "difar" -- i.e., a sonobuoy with (limited) horizontal directivity. Here we

assume a two-dimensional model and the difar measures three things:

an omnidirectional measurement,

dyR, I = Al YT(t-T) dt + dnI  ; (2-26)

and two direction measurements,

dYR,2 = A2 cos(5(t-t)) YT(t-T) dt + dn2  (2-27)

21
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dyR,3 = A 3 sin(a(t-T)) YT(t-T) dt + dn 3  (2-28)

In these equations, T is the time delay obtained from

I
T = - IXT(t-T) - XRI (2-29)

c

The bearing angle 8 is defined by the equation

. " COS(8(t))j xT(t)-x R

L =(2-30)
sin(O(t)) IXT(t)-XRI

Y We assume that nl, n2. n3 are standard Wiener processes so that the parameters

(AI) 2 , (A2 )
2 , (A3 )

2 are signal-to-noise ratios (signal power divided by noise

power, where power equals mean square average). Because xT is a constant

velocity trajectory, we can use

/ XT(t) = xT(O) + t XT(O) (2-31)

to solve explicitly for T as a function of t, XT(O), and xT(O). If we use

--. +. the notation

v = xT(O) (2-32)

-S

-. u = XT(O)-xR + t XT(O) (2-33)

then T is given the formula
0

7 <vu2+( JvI) u12] 1/2
- <v,u> + 1<v,u>

2 +•
-2 [c2  c2  c 2  _

' (2-34)

S5/ -. _

where <v,u> is the scalar product between vectors u and v.

22
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We will now show how to express this model in terms of stochastic differ-

ential equations without explicit time delays such as t--r. Let OR(t) denote

OT(t-T). Then we can rewrite Eqs. 2-26, 2-27, and 2-28 as

dyR,l = A1 sin(R(t)) dt + dn I  (2-35)

dyR,2 = A2 cos(O(t-T)) sin(OR(t)) dt + dn 2  (2-36)

dyR,3 = A3 sin(B(t-T)) sin(R(t)) dt + dn 3  (2-37)

According to McKean [5, p. 41], R(t) satisfies the stochastic differential

equation

dR = f(l-!)dt + o (i1)1/2 dw (2-38)

where w is a standard Wiener process. In other words, the Doppler effect not

only shifts the frequency f but it also expands the bandwidth of the signal.

The factor (i)I/2 may not matter much if i is very small. However, for

broadband source signals, this factor is very critical in allowing one to

estimate any Doppler effects from the received signal.

p To summarize, the time delay model gives us the following differential

equation model for a single target and a single directional sensor:

d 2 xT
- -0 (2-39)

7t dt 2

1~
-1-i = (2-40)

<XT(t-T) - XRXT(t-T)>

c IxT(t-t)-xRl

23
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d R = f(l-i)dt + a (1-)l/2 dw (2-41)

SdyR, = AI sin(R(t)) dt + dnl (2-42)

* -. dyR,2 = A2 cos((t-T)) sin( R(t)) dt + dn2  (2-43)

dyR,3 = A3 sin(6(t-r)) siln(R(t)) dt + dn 3  (2-44)

where T is given by

* '.4 t -T IXT(t-T) - XRi (2-45)-- c

and B is given by

cos(S(t)) XT(t)-XR
= .(2-46)

sin(6(t)) IXr(t)-XR[

In [6],[71 we used a similar model that approximated T 0 in Eqs. 2-40, 2-43,

2-44, and 2-45, and ignored the (I-i) 1 / 2 factor in Eq. 2-41. This gives the

approximate model

d2xT
- =0 (2-47)

",p
J.

-' i- = (2-48)

F" <XT(t) - xR,xT(t)>

dpR = f(l-i)dt + a dw (2-49)

dyR,1 = Al sin(4R(t)) dt + dnI  (2-50)

24
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"tf" "- dYR,2 A2 cos(6(t)) sin($R(t)) dt + dn2  (2-51)
'i

dYR,3 = A3 sin(a(t)) sin(OR(t)) dt + dn 3  (2-52)

We will use this example to motivate our study of filter architectures and

-9. time-scale approximations in subsequent sections of this report. In the next

section we will describe perturbation parameters that can be introduced into

p i this model and which we will exploit to obtain reduced order approximations

." of optimal filters for problems such as this.
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SECTION 3

STOCHASTIC ESTIMATION THEORY

3.1 INTRODUCTION

The first part of this section describes some special features of the

pl passive acoustic tracking model that we can exploit to design approximate

optimal filters. These features are not limited to acoustic tracking problems

and they are present in many other signal processing and estimation problems.Si.

For this reason we will formulate a general class of stochastic perturbation

Oproblems which will form the basis of our research. Our work relies on the

" -methods of stochastic differential equations and nonlinear filtering theory

" [8]. The second part of this section reviews the basic models and results of

this theory.

.- . 3.2 FEATURES OF ACOUSTIC TRACKING MODELS

The example model described in subsection 2.7 has a general quasilinear

form described by three coupled stochastic differential equations:

dx = Fx dt + C dw (3-1)

dz = A(x)z dt + B(x) du (3-2)

dy = C(x)z dt + D(x) dv (3-3)

%d In these equations w, u, v are assumed to be independent Brownian motion

processes. The first equation (Eq. 3-1) describes the target dynamics and

26
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i :.the second two equations (Eqs. 3-2 and 3-3) describe the dynamics of the

observed signal y(t) and its dependence on the target state x(t). The matrix

coefficients A, B, C, and D depend on the target- state x in order to account

for such effects as Doppler shifted frequency, directivity of the sensor, and

aspect dependence of the target emissions.

.,Signal processing and tracking problems often have a signal process y(t)

with a shorter time constant than the target process x(t). This is the case

in passive acoustic tracking where the target dynamics are very slow relative

to the acoustic signal dynamics. We can make this time scale explicit by per-

turbing the stochastic differential equations as follows.

dx = Fx dt + G dw (3-4)

*5 r-dz = A(x)z dt + el/2.B(x) du (3-5)

c-dy = C(x)z dt + el/2.D(x) dv (3-6)

.5

The parameter c is proportional to the time constant of the signal process.

Note that the square root eli2 arises because we are using white noise (du and

dv) to drive these stochastic differential equations; speeding up a Brownian

motion is mathematically equivalent to scaling its magnitude.

" "The equations in Eqs. 3-5 and 3-6 are singularly perturbed. That is,

*D their small E * 0 behavior cannot be approximated by simply setting c = 0.

'.-." Nevertheless, there are ways to obtain good approximations to the solution

-.. of singularly-perturbed problems for small c. There is a vast literature in

singularly-perturbed differential equations. The papers [9],[101 review the

-work relevant to control and estimation applications. We will review work

specifically relevant to our estimation problem in the next section.
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As e approaches 0 in Eqs. 3-5 and 3-6, the rate of information increases

to infinity. For example, suppose there is no z process and we have only the

V two simpler eq(Lations

Sdx = Fx dt + G dw , (3-7)

e-dy = C(x) dt + eI/ 2 .D(x) dv (3-8)

where y is measured and we want to estimate x. This estimation problem is

equivalent to one with equations

- dx = Fx dt + G dw (3-9)

dy = C(x) dt + el/2.D(x) dv • (3-10)

* This is an example of an almost singular filtering problem, which we will dis-

cuss in Section 4. Note that the signal-to-noise ratio (Eq. 3-10) is propor-

tional to c1. Thus, as the signal process becomes faster relative to the

target process, the SNR of the signal becomes larger.

": Passive acoustic signals typically have low SNR, and a model which pre-

_ 9 [dicts increasing SNR is not realistic. Thus, it is necessary to modify the

perturbation above to control the SNR. Note that the noise coefficients B

and D in Eqs. 3-5 and 3-6 are likely to be large and we cannot let the time

[* scale E be arbitrarily small independent of these noise factors. Thus, we

modify Eqs. 3-5 and 3-6 by adding two functions, gl(e) and g2(c) to allow

-different scalings of the noise.

c-dz = A(x)z dt + gl(c)'B(x) du (3-11)

- dy = C(x)z dt + g2 (c)'d(x) dv (3-12)

28
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S- If g1(c) = g2(c) = £112, we have the pure time-scale perturbation. We can

account for greater noise by allowing different functions of e. For example,

92(c) = 1 causes the SNR to remain constant as c + 0, and g2(e) = E-i/2 causes

SNR to decrease to 0 as e + 0. In Section 4 we will survey previous work on

perturbed filtering problems with an eye to different possible choices for

g1 ,g2 . Before doing that, let us first review the basic results of nonlinear

filtering theory which is the basis of our approach.

3.3 FILTERING MDELS AND EQUATIONS

The model of passive acoustic tracking described above is an example of

a general class of nonlinear, continuous state, continuous time processes
'e

driven by white noise. This class has the generic form

dx f(x) dt + g(x) dw (3-13)

dy = h(x) dt + dv (3-14)

where w and v are independent multidimensional Brownian motion processes. The

filtering problem is to estimate x(t) given the measurements y(s) for Os~t.

The filtering equations in the general nonlinear case are expressed are

expressed as follows. Let 0 be a function of the state variable x. Define

%" T t( ) to be the conditional expectation of 4(x(t)) given the measurements up

V' to time t. The filtering equation expresses wt( ) in terms of a stochastic

differential equations as follows [111,[12]:

I dwt( ) = 7t(L ) + [nt(h ) - 7t(h)fft( )] dvt  (3-15)nw -1

IN where vt is the innovations process satisfying the stochastic differential

equation

29
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dvt = dy(t) - nt(h)dt (3-16)

and L is the infinitesimal generator of the process x(t) [11]. In all but a

few cases, the solution of Eq. 3-15 requires an infinite dimensional calcula-

tion. Nevertheless, there are several types of additional models which have

finite dimensional solutions and that can be used to help gain insight into

the essential behavior of the filtering problem. In this subsection we will

describe these models and the related filtering equations that apply to them.

The simplest case is the familiar linear Gaussian model which has

equations

dx = Ax dt + B dw (3-17)

dy =Cx dt + D dv (3-18)

In this case w and v are assumed to be independent Brownian motion processes.

P The optimal filter in this case is the well-known Kalman-Bucy filter [8] which

expresses the conditional probability density of x in terms of its mean x and

covariance P. These satisfy the equations

J L dx = Ax dt + P(DRDT)-ICT(dy - Cxdt) (3-19)

v dP = (AP + PAT + BQBT - pCT(DRDT)-lCp) dt . (3-20)

* Note that Eq. 3-19 is a stochastic differential equation but that Eq. 3-20 is

purely deterministic.

• " Linear Gaussian models are useful because they can Often be used in

' practice to solve nonlinear problems by linearization. Note that the acoustic

tracking model is quasilinear as indicated in Eqs. 3-1, 3-2, and 3-3, and

30
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, .linearization techniques may be helpful in this case. Nevertheless, linear

models and methods are limited and are known to perform poorly in nonlinear

problems with low SNR. Furthermore, methods for analyzing linear problems

center around the analysis of the Riccati equation (Eq. 3-20) and do not gen-

eralize to nonlinear problems. For this reason we have also chosen two types

of discrete state problems to analyze. In these problems x(t) is a finite-

state continuous-time Markov process and the filtering equations are a finite

dimensional system of stochastic differential equations.

A finite-state Markov process is described in terms of its transition

rate matrtix A, where the elements X(&21Ei) of A are the transition rates

Prtx(t+dt)= 2 1x(t)=El} = 6 i2 + X(E2 j l).dt + o(dt). (3-21)

.. .i If Pt denotes the vector of probabilities Pr{x(t)=E}, then Pt satisfies the

linear differential equation

dpt = Apt dt • (3-22)

In the first discrete model we use the same measurement equations as

Eq. 3-14, and it is discussed in [11]-[13]. The filtering equation (Eq. 3-15)

still applies, but it is finite-dimensional in this case. Let rt denote the

vector of conditional probabilities Pr{x(t)= jy(s),0s~t}. Then nt satisfies

* the stochastic differential equation

dirt Art + [h*lrt - rtThirt] dvt (3-23)

where h is the vector with components h( ), h* is the diagnonal matrix with

elemerts h( ), and vt satisfies

31
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dvt = dy(t) - T71t dt (3-24)

The second type of discrete model we will investigate has discrete mea-

surements as well as a discrete state. In this model y(t) is given by

.1

" ""y(t) 
= h(x(t)) (3-25)

and we call this a partially observed Markov process. In this case the fil-

tering equation is a finite-dimensional stochastic differential equation

'driven by a jump process Jt (which is the number of jumps of y(s) in the

interval [O,t]):

dnt(F) = Ft dt + Gt dJt (3-26)

where Ft and Gt are given by

Ft 6h(E)y(t)o[ X(X)t()-7t(). X(y(t)1')it(')] (3-27)

where

V% [:: ~~x(y(t)I ) = l X
-..-. .-. [h( ')=y(t)

Gt 6 h(E)y(t) t-Xt_(( . (3-28)

Appendix B derives this filtering equation and discusses several variations

of the model and of the filtering equation that will be used in studying this

.- type of problem.
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-' SECTION 4

FILTERING PROBLEMS WITH TIME SCALES

4.1 INTRODUCTION

In this section we review previous work on stochastic filtering problems

* with multiple time scales that has some relevance to our problem. Although

no previous work addresses the problem of interest to us, some of this work is

related and the methods used serve as a point of departure for our research.

+ Subsection 4.2 reviews work on problems of estimation when some state compo-

nents are known exactly (the singular estimation problem) or very accurately

- - .(the almost singular estimation problem). Multiple time scales arise in the

solution of almost singular estimation problems, and singular perturbation

methods can be used to solve such problems. As noted in the previous section,

the almost singular estimation problem is equivalent to a simple variation of

one of our models. Thus, both the results and the methods are of interest.

Subsection 4.3 discusses work on estimation problems with natural time scales

-- that is, problems in which the time scale is introduced explicitly as a

singularly-perturbed filtering problem. Although the models used in this

work do not quite include the one we have described for the passive acoustic

tracking problem, they are closely related and the methods of analysis are of

interest.
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4.2 SINGULAR AND NEARLY-SINGULAR FILTERING PROBLEMS

4.2.1 Introduction

The problem of interest in our work is characterized by a very high

* intensity for the measurement noise, but with a long time horizon to perform

S"- tracking, so many measurements may be taken. Ideally, we expect a tradeoff

between the poor measuremeut quality and the number of measurements which are

-available. Since this is the main distinguishing feature of the problem from

* Vother nonlinear filtering problems, it is papers in this area that are most

thoroughly discussed.

- The problem of poor measurements over a long time horizon has received

little, if any, attention in the literature, the related problem of estima-

tion with good measurements over a very short period of time has been dealt

- with extensively. In addition, the dual to this estimation problem, the cheap

control problem, has received significant attention.

4.2.2 Singular Estimation and Control

The limiting case of estimation in low noise (control with small input

penalty) is the situation where noise intensity is zero (penalty associated

with the inputs is zero). These problems are known as the singular estima-

tion and singular control problems, respectively. They have been examined

most extensively for linear Gaussian models.

For the case of linear systems with a continuous state space, Willems,

Kitapci and Silverman [14] investigated the singular control problem while

Schumacher [15] examines singular filtering. Both papers deal with systems

that can be described in the form:

i% 34
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x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where u(t) is the input in the control problem and noise process in the esti-

mat ion problem.

Schumacher handles the filtering problem by breaking the state space into

.two subspaces, one which can be estimated exactly because part of the obser-

4' vations are uncorrupted by measurement noise and the other which is observed

.- only in noise. The representation of the system becomes:

xl(t) = Allxl(t) + Al2x 2 (t) + Blu(t)

x2(t) = A2 1xl(t) + A22x2(t) + B2u(t)

y(t) = ClXl(t) + C2x2 (t) + Du(t)

-.

S..x 2 (t) can be determined exactly from y and its derivatives and also we can

construct a matrix G1 so that

x1 (t) = (AII+GICI)xI(t)-GIy(t)

Note that the equation for xl(t) driven by y(t) is of the same form as a

- Kalman filter and indeed this reduces to the usual Kalman filter when there

* are no noise-free observations.

,The work of Willems et al. [14] deals with the control version of the

problem. Given the state variables x(t) and control variables u(t) from

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

,.
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V. some of the controls are associated with zero penalty. Therefore, there are

two subspaces for u, one in which infinite nagnitude inputs such as impulses

are allowed (zero cost portion) and the other where regular (finite magnitude)

inputs only are possible. The state space is divided into subspaces such as

'" 'the output nulling subspace, controllable subspaces, almost nulling subspaces

and combinations thereof. The paper shows that the optimal control consists

of a set of inputs which forces the state to jump to the subspace controllable

. *by regular inputs. The subsequent trajectory of the state remains within the

subspace.

This compares to the filtering problem of Schumacher where the uncor-

rupted subspace was estimated exactly and instantly, while the variables in

the remaining subspace were estimated over a finite time interval, with imper-

fect accuracy, by linear filtering techniques.

The singular filtering problem for discrete time linear systems has been

addressed by Shaked [161. The system investigated is of the form

Xi+l Ax i + Bwi

i.
_- oYi =Cxi + vi

where E[vivj = r6ij and r + 0.

. ", ~.The paper distinguishes between the cases of uniform and nonuniform rank.

A uniform rank system has the property

"-'. CAiB 0 for i 0,i,...,L-I

and

detICAZBi t 0

36
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which simply means that there is an equal number of integrations (continuous

time) or delays (discrete time) between the inputs and the outputs.

A solution is given explicitly in both cases for the steady-state values

of the Kalman gain and the error covariance matrix.

4.2.3 Singularly-Perturbed and Nearly-Singular Estimation and Control

, The previous subsection dealt with filtering problems that had uncorrupted

measurements and control problems with inputs associated with zero penalty.

A great deal of attention has been given in the literature to closely related

nearly-singular problems. In these cases, the noise in the estimation problem

and penalty on inputs in the control problem are small and positive but not

exactly zero. The nearly singular estimation problem is discussed by Krener

[17] far linear systems (and a restricted class of nonlinear systems), while

*.-'.- -the linear cheap control problem is handled by Sannuti [181-[21].

The work by Krener deals with systems of the form:

,-s

dx = Axdt + B(e)dw w, v, Brownian motion
.. processes.

- dy = Cxdt + D(c)dv

'I., with the matrices B(c) and D(c) being a function of the small positive param-

.eter e. The approach used to solve the filtering problem by Krener is to take

the perturbation parameter c out of the noise covariance matrix and incorpor-

," *ate it into the dynamics of the system. By assuming particular structure for

B(c) and D(c), he first transforms the system above into the form

37
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dXF Aff Afs Xt  d Bff(E) 0 dwf

Ass dt + iL is Ls As+s dws]

dyf Cff Os Xf dff(-) vf

dyS 0 Cs s + 0 I vs

where xf are the states which can be estimated quickly and yf are the outputs

which are corrupted only by a low-intensity noise process. A further assump-

tion on Bff(e) and Dff(e) and a scaling of the state and output variables

yields a system of the form:06

-(1) Ll/2-/2 O]d ]

d~jf eEl Aff 6 iAf][ +f L 0  IjdwsjL dip5  0 Cdt +

dls f Cl/2) Asf 0 ]L1 d :wz
led o d f e Cff 0 f et/2 0 wf
"," =dt +

... The resulting perturbations in the dynamics of the system allow Krener to

O approximate the solutions to the entire Riccati equation. He solves smaller-

''- .-"order problems by expanding the solution in a power series and keeping only

"-' leading-order powers of e. The solution demonstrates that there are two rates

* associated with the dynamics of the Riccati equation when some states are

corrupted by small noise.

Krener extends the problem to the case where
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dxf Aff Afs Xf 0 Bff wf
II iL j dt + d(f +

dxs Asf Ass xs CX

-. .- and shows that the optimal filter can be approximated by the linearized ver-

sion, where as(xf) is replaced by as(xf) and xf is the estimate of the vari-

ables which can be quickly estimated.

The cheap control problem for linear systems has been investigated by

" Sannuti [181-[21). In [181 and [21] specifically, the linear regulator

problem is considered in which the controls are penalized by an amount which

is 0() = 0(U 2 ) smaller than the penalty associated with outputs of equivalent

e, -magnitude. Therefore we have a system of the form:

x = Fx + Gu

y = Hx

j 1 xT S(tf)x + fto TAy + 2 uTBu ) dt

~ to

In [221, Sannuti and Wason demonstrate how an invertible system can be

put into an "almost observable" form using an invertible linear transforma-

- tion. The system can be written as the following when in this form:

..y x0 = AOOx0  + AOlX 1

k
Xia = Y Aijxj + Diu , i 1,...,k

j =0

Xib aixi + xi+l , i 1,...,k-l

y =Hx I

39
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The structure generated by this form is shown in a block diagram in Fig.

4-1. The key feature to this structure i the number of integrations along

each path from input to output. In general, there are paths with 1,2, ...

K-I and K integrators in series. Given the representation above and the cost

., function, Sannuti shows that the magnitude of the optimal controls will be

0(W- 1 ). Furthermore, the high gain of 0(- 1 ) will be evenly distributed

across the integrations of each path.

Therefore, for the forward path with three integrators, the inputs to the

integrators will be O(U-l), 0(p-2/3), and 0(p-1/3) as shown in Fig. 4-2. In

the additional dynamics for xo, the integrator input is the same order as y.

To understand the effect on the dynamics of the control law, we recognize

that the integrator inputs are the derivatives of the state variables, so that

the dynamics are clearly speeded up. Sannuti proceeds to scale the state

variables and controls so that the new inputs to the integrators are all of

the same order. For the case of a three-integration chain we can consider a

simple example.

o1
xl 0 1 0 x 0

x 2 = 0 0 1 x 2  
+  0 u

x 3  0 0 0 -x 3 _ I

1 0 0 ] fT ( T + uTu2 )dt

. ' .0

'V

4,,
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Under the optimal control we will have:

0(u) =0('
- 1 )

0(X3) =0(-2/3)

0(x2) = 0(1-1/3)

0(1) = O(y) = 0(1)

To scale all the derivatives to order 0(V-1/3) we let

x3 = 2/3 Z3

> x2 = 1i/3 x 2

SN dx

Ato obtain:

X 0 o 1 0 , 0

1~/3 2 =0 0 1 x
;3k 0 x

J f (Y T  + uTu )dt

0

Therefore the result of the W2 in the original cost function is a time scaling

* of 11/3 .  In the case where there are k integrations in series, the scaling

will be ul!k. Therefore, for systems with more than one forward path (multi-

". pie rank) there will be multiple time scales on which system behavior occurs.

For the additional system,

x =AOl + AO0 x o

i
P%q
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we let
>1*;' ""xo = x0

aid therefore there is no time scaling effect.

Due to the duality between estimation and control problems, we can expect

a similar phenomena to occur in estimation problems. The above phenomena

I resulted from the V2 B term in the penalty function. The dual condition for

the estimation problem would be that

cov[v(t)v(s)J = j2R6(t,s)

which corresponds to the case of very good measurements [23, p. 270].

.. " To determine the behavior of the estimation problem, we start by w-rking
%

with general control and estimation problems, and generate the dual of the

cheap control problem.

CONTROL/ESTIMATION DUALITY

To obtain a general relationship between the (nearly) singular control

and (nearly) singular filter problems, we need to express the systems in the

general form:

CONTROL ESTIMATION

x = Fx + Gu x = FTx + HT,

y = Hx y = GTx + v

%J ,

2 x(tf)TS(tf)x(tf) + f yTAy + uTBu dt cov() =B R=

to
~:r

rS

Therefore, given the estimation problem:

W
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44~x =-Fx + Hw cov(w) =

y = Cx + v cov(v) = 21

we can translate into the control problem:

x=FTx + GTu

y = HTx

j = tfT 2T' J ~-2 f yTy + 1 2uTu

to

The transformation described by Sannuti could then be performed so that:

1- x0  = AOOx 0 + AOIX I

k
'0 [ " ~ ~Xia =  I Aijxj +  D iu ' i = l, . k

j=o

Xib = cix + xi+l i =l

' - ~ y = Hx1

I tfyTy + 12uTu
j = -.-f Yt

to

-4 Translating back into the estimation context we obtain:
9 -k

. ., : x 0 = Ao 0x + * AT xia

k

•x= i AT x +X
ii ia (j-l)b

45
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k k=i

SATX + AT x + a aiXi + HTu
1 01j0 ia i=l

#2=,

k
y X DTx. +j =l i J.a

cov((17(t), (s)) = BS(t,s)N.

The original equations for the control problem implied the structure of

- Fig. 4-1, while those for the filtering problem imply the structure of Fig.

4-3. Therefore, we find that in the dual system, the form of the transformed

structure is the same (chains of integrators), with process noise replacing

the inputs and measurement noise added to the outputs.

The only minor differences are that the input and output matrices have

reversed position and the state variables have assumed a transposed position

in the structure. However, since the variable labeling is arbitrary, we can

expect results for the filtering problem which are identical in form to those

obtained for the control problem.

w -To demonstrate the implications of Sannuti's results for an estimation

problem, consider a simple example. Given that the special form required

by Sannuti is quite similar for the estimation problem, we can formulate a

problem that is already in the required form. Assume for simplicity that we

have a similar system to the one considered in the control example:

0. o i 0 0

" -x= 0 0 1 x + 0 i = Ax + BwIl

,,0 0 01

1 0 0 Z + 02 :6C + W2

46
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We can write the filtering equations:

x A + CT - 2 (y-Cx)

P AP + PAT + BBT - cTcFW-2

which for our example become:

" = x2 + J-2gll( - xl)

x2 = Z3 + 9126 - xi)

3= -213( - xl)

In the steady state,

",I= 2u5/3 P2 2 =3

SP2 = 4/3 23 = 2p2/3

(4 P13 = P33 = 2pl/3

which result from the Riccati equations:

P11 = 2P12 - -2FI12

P12 = P22 + P13 - -2 P2

P13 =  P23 - -2P1l1t3

P2 2 = 2P23  - 12g22
2.-2

P23 = P3 3  -212 13

P3 3  1 - 13

Now consider the transformation:
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x2= P-1/2 2 = I56

Then the Riccati equations become:

11 2PI2 - P112

P12 P22 + P13  PlP1

-~1/3 P 1 3  P23 - PI1

22 2P 2 3 - P1 2
2

P11 = P5/3p11

l2 = 43 1

VP 13 =P1

23 02/3 3P2 3

V33 = 11/3P3

Solving the algebraic Riccati equations, we get

P11 =2 P2 3 = 3

P12 =2 P23 =2

P13 =1 P33 =2

which upon transformation back to yields our original result.

'S. 49
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The filtering equations become:

Xl 0 1 0 x I  PI1

. pl/3 x2 {=0 0 1 x2 + P12 (Y-Xl)

"- .4 Y,3 J 0 0 0 3  P13

SThis result clearly resembles that obtained for the control problem (time-

scaling of the order pI/3).

From this new form of equations we can easily see the effects of the low

.o measurement noise.

I. The dynamic behavior of the Riccati equation is "speeded up,"
thereby indicating that the filter reaches steady-state much

I- more quickly.

2. The filter dynamics themselves are speeded up.

3. The increased rate of filter convergence is given by a factor
11i/3 with three integrations. This would be pI/k for k inte-

grations, paralleling the cheap control case.

4. The ending steady-state covariances are decreased much more for

. . state variables that are close to the output rather than the

input (see Fig. 4-4). Therefore, the difference in covariance
of the process and measurement noise intensities is spread
evenly across the integrators, so low measurement noise may
not be extremely useful if we are estimating state variables

in a long sequence of integrations.

5. For the opposite case, when V is very large instead of very

small, the trend is reversed. We will be capable, compara-

tively, of estimating variables close to the process, while
variables that are close to the measurement in the chain may
not be possible to estimate.

6. For the reversed case (V large), the convergence of the covar-
iance (and filter) to the steady state will be very slow.

50
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NEARLY-SINGULAR NONLINEAR ESTIMATION

The filtering problem for this type of model is discussed by Katzur,

r Bobrovsky, and Schuss [24]. A system of the form:

dxt = m(xt)dt + odw t
(linear observations)

dy t = h(xt)dt + edvt

• .is discussed, where h(xt) is linear in xt, wt and vt are unit intensity

-Brownian motion processes and c is a small positive parameter. The propa-

gation of the conditional density function in the form of Kushner's equation

is discussed. This yields an equation of the form:

dp = A*pdt + (h-h) (dy - h(xt)) dt

62

which is approximated using a power series expansion in e. A similar proce-

dure is used for Zakai's equation for the unnormalized conditional distribu-

DI tion in the case where h(xt) = xt (dealing with scalars).

: -An estimate for x (leading term) is then obtained as the solution to the
S . -

differential equation

Additional terms are obtained in higher orders of c to improve accuracy.

V -- These additional terms are found as functions of x where x is the solution

to the differential equation above. This yields, to first order in e,
"52
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q. The advantages of this formulation is that a fast analog processor can

perform the averaging process required in the calculation of x*o. After this0

smoothing integration, a slower sampling can be performed, followed by the

nonlinear approximation above. Therefore, this technique naturally yields an

estimator structure with a fast front end" and a slow "back end" processor.

* 4.3 FILTERING WITH DYNAMICS POSSESSING NATURAL TIME SCALES

A second type oi perturbed filtering problem which is of interest is the

case where the perturbation parameter is in the dynamics of the system instead

of the noise magnitudes. This problem and its control dual have been inves-

tigated by Chow and Kokotovic [25], Haddad [26], and Marchetti [27],[28].

In these cases the system displays behavior on multiple time scales before

the noise levels or control penalties are considered.

4.3.1 Continuous-State Problems

Chow and Kokotovic [25] analyze a control problem which is nonlinear and

displays behavior on two time scales. The model employed is of the form

x = al(x) + Al(x)z + Bl(x) u

:; = a2 (x) + A2 (x)z + B2 (x) u

J ; f [P(x)+S'(x)z + z'Q()z + u'R(x)u] dt
0

In their analysis, they attempt to obtain an approximate, but lower

"-. dimension solution to this problem. The approach that is used is to initially

set c=O, solve for z and then determine the optimal slow control for the

reduced-order system. The fast subproblem is then solved using the fast

53
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subproblem is then solved using the fast dynamics and the solution to the slow

control problem. The two controls are then added together to obtain:

uc us+ut

where us is the optimal control for c=O and uf is a correction term required

because e*O. The dual estimation problem is quite similar. The extra diffi-

culty that arises for the estimation problem is that we also have white noise

present, which is fast when viewed at any time scale. The dual problem is,

however, discussed by Haddad [26] with results similar to those for the con-

trol problem.

Haddad considers a system of the form:

x =Alx + Al2 z + Blu

-= A 2 1x + A2 2 z + B2u

Y=Clx + C2 z + v

His first step is to perform a linear transformation to separate the fast and

. slow parts of the state to obtain:

n = Aon + B0 u

E- = A2 C + B2u n(to) no

y = Con + C2 C + v (t 0 ) =0

As in Chow and Kokotovic's solution to the control problem, Haddad splits

the solution into two parts. The first part is obtained by setting c=O and

solving for F In terms of u, thereby assuming for this portion that is a

white-noise process. The resulting "slow" solution is shown to be valid to

O(P) for t • t o + j, where is a small positive number. For the interval

54
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t o i t 4 t o + Pl, an additional portion, known as the boundary layer, must be

added .o the solution.

The term "boundary layer" refers to an additional part of the solution

which is an adjustment for the facts that we have initial conditions and the

F process is not actually white noise.

The resultant filter is given by:

n = ~A + (PIC 0 ' + P1 2 C2 ')R-(Y- C - C2 )

l = A2Z + (EP1 2 CO ' + P2 C2 ')R-(Y - CO; - C2 Z)

P2 and P1 2 are given by

P2 (t) = P + t) P+ + 0()

P1 2 (t) = P1 2 (t) + P12 (6) + O(E)

where e = t/e and P2(6), P1 2 (e) are corrections for boundary layer effects.

The slow mode filter may be implemented without the correction terms and still

• "be valid for all t > to because the filter dynamics are slow and therefore

the boundary layer time interval will have negligible effect on its output.

4.3.2 Discrete-State Problems

Marchetti [27] deals with discrete-state space problems, specifically

Markov chains. The system dynamics in these problems are singularly perturbed.

The systems dealt with are of the form:

dptc = (B+cA)ptc

dyt = h(xtc)dt + dwtc
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where pt6 is an n-dimensional column vector of probabilities, (B+cA) is a

state transition matrix, wE is a standard Brownian motion process and h(xte)

is a function of the state. The fact that the transition matrix is B+eA,

V will yield multiple time-scale behavior for the system, given that B satis-

- fies certain conditions on its eigenvalues. Marchetti derives formulas for

propagating the Zakai equation by

1. Writing ptE as a power series in e,

pt = Pk(t)Sk

k=O

2. Substituting in the Zakai equation and equating power of e.

3. Writing the equations above in aggregate and decentralized
forms, thereby reducing the order of the systems of differential

equations.

Using the second step we can approximate the probability mass function

for the states of the system to any order in c that we desire; however, the

approximation will only be valid on an interval [O,T). In [281 a variation

on this is developed which produces approximations over intervals of length

"":" {o ,Ti/ 1.
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SECTION 5

FILTER ARCHITECTURES FOR TIME-SCALE APPROXIMATIONS

5.1 COMPARISON OF FILTERING TECHNIQUES TO THE REQUIREMENTS OF OUR PROBLEM

From our original discussion we are interested in the estimation problem

.- for the system

dx ; AI(x) + BI(e) dw1

cdz = A2 (x) + B2 (E) dw2

(e)dy = C(xt,z) + D(e) dv

The noise terms have magnitudes which are functions of c and therefore the

system is in the nearly singular category (in addition to a perturbation in

(e the dynamics). In particular, we are interested in the case of poor measure-

ments so we might set D(c) = /-- I, and O(BI(e)) = 0(1), O(B 2 (0)) 0("-).

The problem considered by Katzur et al. [24] falls into the same problem

category, but deals only with the scalar case and a system with one time scale.

In addition, it deals with small noise instead of large noise. Finally, the

" ~nonlinearities occur only in the state dynamics, not the observations.

The work by Haddad [26] is similar to our problem except that ours is

, nonlinear and he does not assume E dependence of the noise magnitudes. In

addition, his measurements are a function of both the fast and slow processes,

whereas we are measuring only the fast process.

. -- °.5

.".
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- Krener [17] does not deal with more than one natural time scale and

S"assumes that the c dependence of the noise produces small noise instead of

large noise. Chow and Kokotovic [25] deal with a system with natural time

scales and nonlinearities. However, the problem does not contain c dependen-

- ii  cies in the cost function which would become noise magnitudes in the filtering

dual.

Sannuti does not assume natural time scales for the system, but does deal

- . with time scales once they arise from perturbation parameters in the penalty

function. The dual of his assumptions, however, are that the noise intensity

- - is low.

Finally, Marchetti assumes perturbation parameters in the system dynamics.

-The noise is also assumed to be bad in the case of [28]. In [27] he handles

an approximation that is valid only on [0,T], but [281 improves this to the

interval [0,1/c].

In general, the exact problem that we are interested in has not been

handled in the literature due to a combination of the following features:

I. Measurements are nonlinear functions of the state.

2. Perturbations exist in both the dynamics and the noise

magnitudes.

3. We are interested in the high-noise case, not the low-noise

case.

Regardless of the exact applicability of the techniques covered in the

literature, we can examine the structures of the processors that are implied

by each of the techniques (or corresponding duals).

?%
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5.2 FILTER ARCHITECTURES OF EXISTING TECHNIQUES

5.2.1 Fast Front End, Slow Back End With Feed-Forward and Feedback (Fig. 5-1)

This structure was motivated by the structures of existing processors.

Not all existing structures have the feedback present, and depending on the

problem conditions, it may or may not be very useful.

5.2.2 Slow Processor with Correction (Fig. 5-2)

This qtructure is motivated by the work of Chow and Kokotovic [25] and

Haddad [26]. In both cases, the slow processor is the processor that would

be obtained if e=O, with the fast dynamics assumed arbitrarily fast. The slow

results are then used, in combination with the model of the fast dynamics, to

determine the estimates of the fast variables.

5.2.3 Fast Estimates Followed by Slow (Fig. 5-3)

This structure is motivated by problems with c in the cost function or

noise magnitude (Schumacher, Krener, Willems). The parameter is taken into

the system dynamics, resulting in a set of variables that may be estimated

quickly. Once these estimates are determined (i.e., steady state is reached)

they can be used to help in the estimation of variables that are corrupted by

greater noise.

5.2.4 Steady-State Solution with Boundary Layer (Fig. 5-4)

0 This structure was motivated by Sannuti and the cheap control problem.

In this case a control was found which was valid on [0,-], but a correction

had to be made over the initial time interval [O,c] to correct for the initial

conditions. This correction was described as a "boundary layer."
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. 5.2.5 Multiple Lower-Order Filter (Fig. 5-5)

-, This structure was motivated by Marchetti's paper on the propagation of

the Zakai equation for a Markov chain. Multiple lower-order filters perform

calculations which are combined to determine an approximate result for the

•.. normalized probability mass function.

5.2.6 Fast Analog Processor Followed by Slow Digital Processor (Fig. 5-6)

This structure was proposed by Katzur et al. In [24] they showed that

for a nonlinear system and small measurement noise, a linear analog filter

could reduce the sample frequency prior to nonlinear manipulations.
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fast slow x

R-5458

Figure 5-1. Fast Front End, Slow Back End with Feed Forward and Feedback
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Figure 5-2. Slow Processor with Correction
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Figure 5-3. Fast Estimates Followed by Slow
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R-5461

Figure 5-4. Steady-State Solution with Boundary Layer

[--.
;';- P P (t)

TRALIZED
Z) R-5462

Figure 5-5. Multiple Lower-Order Filters

.
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Figure 5-6. Fast Analog Processor Followed by Slow Digital

Processor (Nonlinear Operations)

62

;r e



ALPHATECH, INC.

SECTION 6

FILTERING PROBLEM FORMULATIONS

L In this section we describe both the specific nonlinear filtering prob-

lems selected for analysis and the conjectured behavior and filter architec-

ture that these models suggest. The key features that we wished to capture

in the problems chosen for study are:

0 The system models should possess both fast and slow dynamics

• Direct measurements of only the fast variables are made, and

these measurements may be of poor quality

. The principal objective is to estimate the slow variables

* The problems chosen should be as simple as possible in order
to facilitate analysis and our ability to gain insight into the

character of such estimation problems.

As discussed previously, the choice of these features was motivated by desire

- "to capture some of the critical aspects of passive acoustic tracking problems.

- 6.1 EXAMPLES SELECTED FOR ANALYSIS

In this section we describe two closely related examples that have formed

the focus of our detailed study. Both involve estimation for a particular

finite-state Markov process possessing two time scales.

6.1.1 Measurements Corrupted by White Noise

O In this problem we are interested in estimating the state of the 4-state,

continuous-time finite state Markov process p(t) whose transition behavior is

depicted in Fig. 6-1. Here c is a small parameter. This process spends most
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1 3

2 k£312

2 44

R-5558

Figure 6-1. A 4-State Markov Process

- of its time jumping between 1 and 2 or between 3 and 4 (the fast dynamics)

..

and occasionally jumps between the left {1,2} and the right {3,4} (the slow

* dynamics). We are ultimately interested in tracking the slow behavior given

* noisy measurements of only the fast dynamics. The measurement model we use

3 to capture this is

dy(t) = g(c) h(p(t))dt + dv(t) (6-1)

R where v(t) is a standard Brownian motion, independent of p(t). The quantity

g(E) is a function of c which is used to model the relative quality of our

measurements. Its magnitude relative to c, which directly controls the SNR

*of the measurements, is of central importance in our analysis. Finally, to

- guarantee that our measurements provide us only with direct information about

the fast dynamics, we assume that

h(I) = h(3) = a'

(6-2)
h(2) =h(4) =

64
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i.e., that our measurements indicate only if the process is on the top {1,3}

or the bottom of t2,41.

6.1.2 Perfect Measurements with Small Differences in Rates

In this second model we consider the same 4-state process in Fig. 6-1,

but in this case we assume that we have perfect knowledge of whether the pro-

I
.r. cess is on the top {1,3} or the bottom {3,4}. In order to capture the feature

that the measurements contain only weak, indirect information about left-right

behavior, we assume in this case that

A3 = Al + a g(e)
(6-3)

X4 = X2 + a g(c) •

6.2 CONJECTURED ASYMPTOTIC BEHAVIOR AND FILTER ARCHITECTURES

In this subsection we perform some initial analysis of the nonlinear

filtering problems introduced in the preceding subsection. The end results

of these analyses are several approximate filter structure whose properties

and performance versus the optimal solution are explored in subsequent

sections.

6.2.1 The White Measurement Noise Model

Let

pi(t) = Pr[p(t) = i y(T), v<t] (6-4)

Then from standard results in nonlinear filtering [13], we have that

65
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. dpl(t) = [(-l - Pl)PI(t) + X2 P2 (t) + C02 p3 (t)]dt

+ g(c)[ct - h(t)] pl(t)[dy(t) - g(c) h(t)dtj (6-5a)

dP2 (t) = [Al P(t) + (-A2 - E03) P2 (t) + EIJ4 P4 (t)jdt

+ g()[B - h(t)] P2(t)[dy(t) - g(e) h(t)dt] (6-5b)

dP3(t) = [pl PI(t) + (-A3 - :112)P3(t) + X4 p4 (t)]dt

+ g(r)[a - h(t)] P3(t)[dy(t) - g(c) h(t)dt] (6-Sc)

dp4 (t) = [sP3 P2 (t) + A3 P3(t) + (-X4 -EP4)P4(t)] d t

+ g(e)[ - h(t)] P4 (t)[dy(t) - g(c) h(t)dt] (6-Sd)

where

4 A

h(t) = c[Pl(t) + P3(t)] + a[P 2 (t) + P4(t)] (6-6)

As in Marchetti's work, it is quite useful to transform coordinates to high-

light explicitly the aggregate variables of interest. In this example, one

can give simple explanations for the several variables that arise. Specifi-

cally, let

PL(t) = pl(t) + p 2 (t) (6-7a)

, . pR(t) = p3(t) + P4(t) (67b)

X2
=1(t)  Pl(t) pL(t) (6-7c)

.. +X 2

4'X4

62 (t) = P3(t) pR(t) (6-7d)
X3 + X4
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%~ 4' Here pL(t) and pR(t) are the probabilities of being on the left and right,

respectively. Also, 61(t) is the deviation between the exact probability of

being in state I and its approximation obtained by multiplying the probability

of being on the left by the steady-state probability of being on the top given

the process is on the left and no left-right transitions can occur. An anal-

ogous interpretation can be given to 62(t). Note that one might expect 61(t)

and 652 (t) to be small since the process essentially can reach steady-state

between left-right transitions.

If we transform variables according to Eq. 6-7 and eliminate pR(t) by

replacing it by I - pL(t), we obtain the following set of three coupled sto-

-. chastic differential equations for the exact optimal nonlinear filter:

dpL(t) =-_Y - (Yl + _Y2) pL(t)ldt + e[-fll 61(t) + n2 62(t)]dt

+ g()[fl - h(t)] pL(t)dv(t) + g(c) A61(t)dv(t) (-a

j4d5 1(t) -Al 61(t)dt + cln5 -n?3 6 1 (t) + (4- n5)P L(t) + n6 62(t)]dt

+ g(e)[c1 PL(t) + Q 61(t) - h(t) 61(t)]dv(t) (6-8b)

d62(t) -A2 62(t)dt + e[fl8 -nf7 62(t) + (nlO- n8)p L(t) + fl9 61(t)Jdt

L') 6-c
+ g(EMEI3 - 3 P() + 64 62(t) - h(t) 62(t)]dv(t) (-c

where

dv(t) dy(t) -g(E) h(t)dt (6-9a)

,pjh(t) fR + (fl f R) pL(t) + A[6 1(t) + 62(t)] (6-9b)

and the various constants appearing in Eqs. 6-8 and 6-9 are
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lA =a = X + X2

, A2 =3 
+ X4 'l l -3

P Il Xl + 113 X2
q2 = P2 - 04 n3 =

r . : "  X I +  X 2

iX A1 X2 (P3 - Pl) P2 XI X4 - V14 X2 X3
.5T = 5 =
""- ( 1I + A2 ) 2  (Al + X2 )(X 3 + A4)

TI, 6 2 XI +  P4 X2 112 X 3 +  114 X4

# "XI + X2  X3 + X4

'S8 X3 X2 (P 4 - P2 ) Pl X3 + 03 )4
" rl8l9 =

( 3  + 4) 2  
X3 + X4

r..' , (6-10)

J1 X2 X3- P.3 l X4  X1  2(
C 

-)

9 (Al + X2 )(X 3 + X4 ) (X1 + X2) 2

. '-a 1 
+ a 2  A3  4(a -)

" "" 2 = f-3 = ____

l + X2  
(X 3 + X4) 2

f4

.a X3 + a X4 A2 Pl + XI P3

X3 + A4 Y1i + X2

- 4 2 + X3 Ps A1  + X2 a
Y2 =fL

X3 + A4  A1 + X2

X3 S + A4 afR = -

A3 + X4

-.- * i..Note that the innovation dv(t) in Eq. 6-5 is a standard Brownian motion.
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Since we will be focusing on the estimation of the slow left-to-right

transitions, it is useful to change time scales to that at which these tran-

s it ions occur, i. e. , we wi 11 make a change of scale of the f ormn

* t~~~old =~nw(-1

Performing this change of scale on Eq. 6-8, with care taken in accounting for

the quadratic variation of the innovations, we obtain the following

*dpL( t = Y2 - (Yl + Y2) pL(t)]dt + Hn2 62(t) - 111 61(t)]dt

g~c)gte)(6-12a)

+ ,, f[l, - h(t)]pL(t) dw(t) + -_ A61(t) dw(t)

A1
d61(t) =--6 1 (t)dt + [115 - n13 61(t) + (n14 - 1 5)p L(t) + n16 62(t)]dt

(6-12b)
g(C) Lt

+ - [ l p~t + ~261jt) - h(t) 61(t)]dw(t)

A2
%:d6 2(t) -C~- 62(t)dt + [rn8 - n14 62(t) + (1110 - 8)P L(t) + 119 61 (t)]dt

Ig(c-) (6-12c)

+ 13- &3 P L(t) + 4 62(t) - h(t) 62(t)ldw(t)

where dw(t) is a standard Brownian motion representing a scaled version of

*1~, the innovations.

We now turn our attention to the description of two different approxima-

tions of the optimal estimator. Both are based on the fact that at thle slow

time scale the left-right transition behavior is approximately that of a

2-itate Markov process [291. Specifically, consider the timne-scailed 4-state

61
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. process p(t/e). Over any interval At, this process undergoes numerous (indeed

infinitely many as c 0 0) top-to-bottom transitions. This suggests two impor-

tant approximations. The first is that if we aggregate away these very fast

* transitions, we will be left with a two-state ?arkov process. Specifically,

let

q t L if p(t/c) = I or 2Sq(t) = I  (6-13)

("R if p(t/c) = 3 or 4

Then, as shown in [29], q(t) is asymptotically a 2-state Markov process with

transition behavior depicted in Fig. 6-2. Here the rate yI represents a

weighted average of the left-to-right rates pl and 03 in Fig. 6-1, where the

" weights equal the ergodic probabilities of being in states I and 2 when we

neglect left-to-right transitions (i.e., the fast top-to-bottom transitions

essentially reach equilibrium before a transition from left to right occurs so

that the rate of such a transition can be computed by this weighted average).

Obviously, there is an analogous interpretation for Y2"

p (")E

R-5559

Figure 6-2. The 2-State Aggregate Process

The second approximation is based on the fact that over time interval At,

• the fast top-to-bottom transitions have a similar averaging effect on the

observations, i.e., that we can model our observations as

dy(t) = g( ) f(q(t) ,dt + dv(t) (6-14)

70)
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where

f(L) fL , f(R) =fR (6-15)

tagain represent averages.
- The resulting nonlinear filtering equation in this case is given by

dPL(t) = E[Y2 - (Y1 + Y2)PL(t)Idt + g(E)[ff - h(t)IpL(t)[dy(t) - g(e)h(t)dt]

. "* (6-16)

where

h(t) =fR + (fL - fR)PL(t) . (6-17)

Comparing Eqs. 6-16 and 6-17 to Eqs. 6-12 and 6-9, we see some important sim-

ilarities. Indeed, if 61 and 62 were replaced by zero in Eqs. 6-9 and 6-12,

the equations in fact become identical. One might conjecture then that under

- the right circumstances, Eqs. 6-16 and 6-17 would be an excellent approxima-

tion to the optimal estimator of the slow variables. The analysis and simu-

lation results in the following sections show that for measurements with a

" -particular range of signal-to-noise ratios, as characterized by g(e), this

is in fact the case.

It is instructive to examine the architectural implications of the

approximation we have just described. In Fig. 6-3 we have depicted the

architecture of the optimal estimator, in which there are both fast and slow

"variables, while in Fig. 6-4 we have the much simple (pictorially and computa-

tionally) approximate estimator. In this estimator we are in essence taking

advantage of the slow pL dynamics to average out the effects of the fast fluc-

tuations in the data. In fact this also suggests a related approximation.

In particular, since the approximate estimator has no fast variables, its

U 71
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dy(t) +

IF-C L

Fast Variations Slow Variable p (t)
L

. (t), 82(t) p (t)

h'3 h(t) Calculation [-4

R-5560

Figure 6-3. Architecture of the Optimal Filter

0 L 10 y(t) +f Slow Vari able PL
( t )

0 PL~t)

R-5561

Figure 6-4. Architecture of the First Approximate Filter

* digital implementations can use a far larger step size. What this implies

* is the structure depicted in Fig. 6-5. Here the front-end preprocessor per-

- forms an averaging of the observations over a time interval that is long with

I. -

Srespect to the fast variables but short with respect to the slow variables.

The back-end processor then uses these averaged values in a sampled data

a7,r) rif ox t ion of Eq. 6-16.
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dy(t) Front-End AYk + Slow Variable PL(

Averager +-Lt

-1 -u

: - "--h(t) Calculator

" 1  i, Digital Back-End (Low Sampling Rate)
, - -....................----- ---------------- R-5562

y . Figure 6-5. A Front-End/Back-End Structure Based on the Approximate
Filter in Fig. 6-4

,. It is also possible to describe a considerably different front-end/

back-end structure for an approximate estimator. This structure is motivated

. -explicitly by passive acoustic tracking architectures in which the front end

uses a batch of data to estimate slowly-varying quantities -- bearing, fre-

quency -- based on the assumption that these quantities are constant over the

- time interval of observation. The sequence of estimates produced by the front

end then are used as measurements by the back end which attempts to track
f4

these slowly varying quantities.

di In our present context, a structure of this type would have the form

.depicted in Fig. 6-6. Here the front-end uses a batch of data for

kT(e) 4 t < (k+1)T(E) to perform an hypothesis test -- is the processor on

the right or the left -- based on the assumption that no left-to-right transi-

tions can occur, i.e., on the model depicted in Fig. 6-7. The sufficient sta-

" . i tistic for this hypothesis test can be taken to be either PL, the conditional

probability that the process in Fig. 2-7 is on the left, or the likel'ihood

,' rat io
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Front-End Batch k Slow EstiPL (t )

"Hypothesis Tester "
~R-5563

Figure 6-6. Front-End/Back-End Structure with Front-End Hypothesis Testing

1 3

1 2 3 4

2 4

R-5564

Figure 6-7. Model on Which the Front End of Fig. 6-6 is Based

i PL

L= (6-18)*,b .1
' .""I - PL

Vf e The computation of PL is a nonlinear filtering problem analogous to the one

described previously -- i.e., by getting the pi = 0 in Eq. 6-5, letting

PL = (PI + P2) , PLT = P1 PRT = P3 (6-19)

and replacing P2 by PL - PLT and P4 by 1- PL- PRT, we obtain

dPL(t) .g(c)[h(t) - h(t)]PL(t)[dy(t) - g(e) h(t)dt] (6-20a)

'7

" "dPLT(t) = [- 1 PLT(t) + X2(PL(t) - PLT(t))]dt

+ g()[a - h(t)IPLT(t)[dy(t) - g(e) h(t)dt] (6-20b)

.1 74
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dPR(t) = -X3 PRT(t) + X4 (I - PL(t) - PRT(t))]dt

(6-20c)
+ g(E)[ - h(t)]PRr(t)[dg(t) - g(e) h(t)dt]

where

h(t) = B + (a - )(PLT(t) + PRT(t)) (6-21a)

L ^ PLT(t )

'.r., hL(t) = 6 + (a -0 (6-21b)

PL(t)

Here hL(t) is the expected value of h(p(t)) given the data and assuming that

the process is on the left.

Several alternate forms of these equations are also of potential value

both in providing insight and for their potential computational simplicity.

First we define the conditional probability of being in state I and state 3

- " given the data and assuming that the process is on the left and right,

respectively:

1 PLT PRT

- QLT QRT = (6-22)

.. PL I PL

An application of its differential rule [8] then yields

dPL(t) = g()[hL(t) - h(t)]PL(t)[dy(t) - g(s) h(t)dtj (6-23a)

[O dQLT(t) = [X2 - (Xl + ,2)QLT(t)]dt

V . i -" + g(c) (a - hL(t))QLT(t) (dy(t) - g(c) hL(t)dt) (6-23b)

dQRT(t) = [A4 - ( 3 + X4)QRT(t)]dt

+ g(c) (a - hR(t))QRT(t) (dy(t) - g(c) hR(t)dt) (6-23c)

where

,~7
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hL(t) = + (a - g) QLT(t) (6-24a)

hR(t) = + (a - ) QRT(t) (6-24b)

=h(t) hL(t) PL(t) + hR(t) (1 - PL(t)) (6-24c)

Note the decoupled structure of these equations as depicted in Fig. 6-8, where

.. we have used the fact that

dv(t) = dy(t) - g(c) h(t)dt = PL(t) dvL(t) + (1 - PL(t)dvR(t) (6-25a)

where

dVR(t) = dy(t) - g(e) hR(t)dt , dVL(t) = dy(t) - g(e) hL(t)dt (6-25b)

Note also that unlike the exact nonlinear filter (Eq. 6-5), these equations

do not involve variables at 2 time scales and thus can be integrated more

efficiently.

Yet another useful form can be obtained using the likelihood ratio

(Eq. 6-18):

v ' dL(t) = g(e) (hL(t) - hR(t)) L(t)d.R(t) (6-26a)

dQLT(t) = iX2 - ( 1 + X2)QLT(t)]dt + g(E)(a - hL(t))QLT(t) dvL(t) (6-26b)

dQRT(t) = iX4 - (X3 + X4)QRT(t)]dt + g(e)(a - R(t))QRT dVR(t) (6-26c)

£ .'Note that these quations are somewhat simpler than the preceding set since we

. do not need to compute dv(t). Taking this one step further, if we let

Z(t) log L(t) (6-27)
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then

d =(t) - i g2(C)[jL(t) _ hR(t)] 2dt + g'g)(hL(t) _ hR(t)]dvR(t) (6-28)

" which is just a simple accumulation:

(k+l) T( c)

QZ((k+I)T(E)) = (kT(E)) - 1 
-[ h(t)12dt2 f [Lt ~ J

kT( )
(6-29)

(k+l)T(s)

+ g(C) f [hL(t) - hR(t)]dvR(t)

kT( )

Let us comment on the choice of initial conditions at the start of each

interval. A natural set of choices are

X 2 QR 4
QLT = - QRT (6-10a)

Xi + X 2  X3 + X4

ard the following equivalent conditions

PL L= , 0. (6-30b)

Equation 6-30a corresponds to assuming that the fast process is in equilibrium

° when we begin an observation interval. Equation 6-30b corresponds to no prior

information, i.e., no feedback is provided from the back end in Fig. 6-6 to

front end.

Finally, at the end of each interval, we perform a threshold test. In

terms of Z, this is
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mk+l = L

> (6-31)

Z[(k+l)T(E)] 0

<

Mk+1 + r

-. where "L" and "R are the two values of the observational input to the back

end in Fig. 6-6. The back end is then simply a sampled data estimator of the

2-state process in Fig. 6-2, with measurements provided every T(c) time units.

We can characterized the performance of the front end in terms of 2 quantities

LL() = Prob[mk = L process on the left] (6-32a)

SLR() Prob[mk = L process on the right] (6-32b)

We explicitly write these as functions of e to indicate that the performance

-' of the test (Eq. 6-31) depends upon the size of the time interval. Note,

however, that these performance measures only make sense fcr T(E) small with

respect to 1/c so that the process actually is very likely to stay on the left

or on the right over the entire interval.

Given the quantities in Eq. 6-32, the optimal back end can be described

as follows. Let

pL(klj) = Prob[process on left at time kT(c) ms , s < j] (6-33)

S -"then

P .- =_(Yl+Y2)T(E) Y2 ( -(Yl+Y2)T()) (6-34)
. .- P t(k+llk) =e PL k k) + eI (6 34

YI + Y2

. * " and if mk+l = L
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.LL(E)PL(k+i k)

PL(k+llk+l) = (6-35a)

LL(C)PL(k+1k) + LR(W) [1 - PL(k+llk)]

while if mk+l = R

[ - 4LL(s)]PL(k+ljk)
. PL(k+llk+l) - (6-35b)

[1 - OLL(E)]PL(k+ljk) + 11 - WLR(c)][I - PL(k+llk)]

The evaluation of OLL(e) and OLR(c) are therefore essential both to define the

update step (Eq. 6-35) and to evaluate its overall performance and asymptotic

properties. A key question here involves the relationships among the time

* 'scale separation controlled by c, the rate at which information is obtained

controlled by g(e), and the data collection interval T(E).

We note that it is also possible to define a slightly different front-

end/back-end structure in which we eliminate the hard decision (Eq. 6-31) in

* the front end and instead take as input to the back end the likelihood ratio

Lk = L(kT(e)) (6-36)

Note that for T(E) small with respect to l/ and with an initial condition of

I on L at the start of an interval, Lk is approximately equal to

S .Pr [data over [(k-l)T(c),kT(t)) I process on the left]

Pr [data over [(k-l)T(c),kT(e)) process on the right]

-- for the true process. This suggests the following back end algorithm. The

prediction step is still given by Eq. 6-34. The update step, however, is

given by

L l )Lk+ I PL(k+l k)cs PL(k+llk+l) =(6-37)

Lk+1 pl(k+llk) + (I - PL(k+llk))
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Finally, we note that we can combine our two types of approximations to

obtain a far simpler one. Specifically, suppose we model our observations as

in Eq. 6-14 by assuming an averaging effect. Writing these in the original

- .. time scale

- dy(t) = g(E) f(q(t))dt + dv(t) (6-38)

=d i.

Then if our front end assumes no left-to-right transitions, we obtain

dPL = g(c)[fc - h(t)] PL(t)[dy(t) - g(e) h(t)dt] (6-39)

h(t)= fR + (L- fR) PL(t) • (6-40)

if we define

PL(t)
L(t) - (6-41)

- - PL(t)

we obtain

dL(t) = g(e) (L - fR) L(t)[dy(t) - g(c)fRdt] (6-42)

or if

-(t) = log L(t) (6-43)

then

di(t) - g2 (C) [fL - fR]dt 2 + g(C) (fL - fR) [dy(t) - g(e)fdt]

2
(6-44)

.- -.

dk(t) - g2(c) [fR 2 
- fL2 ] + g(c) (L- fR)dy(t) (6-45)

*%. 28
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This leads to the following algorithm: use Eq. 6-34 for the prediction

step and Eq. 6-37 for the measurement update, with

- Lk e~ k  (6-46)

" 2"-"" (k+l)T( c)

k= - g 2() [fR 2  fL2 IT(c) + g(c) [fL fR1 f dy(T) (6-47)
, 2 kT(E)

Note that the basic processing step in the front end is exactly a simple aver-

aging of the measurements.

6.2.2 Perfect Measurements with Small Differences in Rates

In this case, since we directly observe whether the process is on the

0 top or the bottom, the exact filtering equations involve only pL(t), the prob-

ability of being on the left. To facilitate our development, we introduce a

process indicating the top-bottom status of the processor

S1 p(t) 1 or3

x(t) (6-48)

0 p(t) =2 or 4

[. Then, using the analysis in Appendix B we have the following description of

the evolution of PL(t):

While x(t) = I

PL(t) = EW2 - c(wl + W2 ) PL(t) + ( 3 - X) PL(t)[1 - PL(t)] (6-49a)

While x(t) = 0

PL(t) = EV4 - C(I13 + W4) PL(t) + (04 - X2 ) PL(t)I - PL(t)] (6-49b)

.8 a82
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When x(t-) = 1 and x(t) = 0

XI PL(t-)
PL( t) (Oi - xjP,(t-) + X3(6-49c)

When x(t-) =0 and x(t) =1

X2 PL(t-)
PL( t) (6-49d)

(X2 -X 4) PL(t-) + X

These can be combined into the following stochastic differential equation

where we also use Eq. 6-3:

dPL(t) =1ICP2 -C(1JI + V~2) PL(t) = cg(s) PL(t) (G -PL(t))Ix(t)dt

+ [cP4 - (Wi3 + PO) PL(t) + 6g(c) PL(t) (I PL(t))I[' - x(t)Jdt

+ g(E:)PL(t)1l-PL(t)] x2sxE)l.Lt)] dx( t)

(6--50)

Two alternate forms of these equations provide additional insight. First

note that

E[dx(t)IX(T), T t] -X(t)[Xl PL(t) + X3 (l - PL(t))]dt

+ [1 - XMt) [X2 PL(t) + X4 (l - PL(t))]dt

=-x(t)[Xl + czg(C) (1 - PL(t))I (6-51)

+ [1 - x(t)]I[X2 + ag(c) Gl PL(t))]

A h(t)dt
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Using Eqs. b-3 and 6-51 we can rewrite Eq. 6-50 as

dPL(t) =[i2-(W'i + 12)PL(t)Ix(t)dt + -IP (V3s + VO4PL(t)][l x(t)Jdt

+ g(Ec)PL(t)1 l-PL(t)J X+nc[1Lt) 1- tIj(dx(t)-h(t)dt)

(6-52)

A second important form involves two derived quantities

R(t) =Total residence time of P(T) NT41t on the top
(i.e., in states I or 3) (6-53)

K(t) =Total number of changes in x(-r) over O<T~t

Then

dR(t) x(t)dt
(6-54)

dK(t) Idx(t)j -x(t)dx(t) + Ll-x(t)Idx(t) =[1-2x(t)]dx(t)

P Note several equalities

x2(t) = x(t) ,[1-x(t)J
2  1 -x(t) ,x(t)[1-x(t)] 0

[I-2x(t)] 2 =I ,x(t)[1-2x(t)I = -x(t) ,[l-X(t)j[1-2x(t)] =1-x(t)

(6-55)

Using Eqs. 6-50, 6-54, and 6-55 we obtain

dPL(t) [EIp4 - (P3 + 14)PL(t) + ag(C)PL(t) (G -PL(t))dt

+ [C(Ip2 - PO) - C(PI + PJ2 - P3 - 0.4) PLMt

+ (a-a) g(Fc) PL(t) (1 -PL(t))]dR(t)

OLx(t) afl-x(t)I

- g~c~pl(t) IIPLIt)] - + x2+ag(Fc)l1-PL(t)]jdKt

(6-56)
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C ,Equation 6-56 suggests one straightforward front-end/back-end decomposi-

tion. Specifically, because of the slow dynamics in Eq. 2-56 one can imagine

a system of the form depicted in Fig. 6-9. Here the front end performs a

simple accumulation, computing AR and AK over an interval of time that is long

with respect to the fast dynamics and short with respect to the slow dynamics.

These quantities are then fed into a sampled version of Eq. 6-56.

One can also envision two other, more sophisticated front-end/back-end

' ' : approximations to Eq. 6-56, each of which is analogous to one of the forms

described in the preceding subsection. In the first of these, depicted in

Fig. 6-10, we perform a front-end hypothesis test whose results are fed into

a back-end slow estimator. Comparing Figs. 6-6 and 6-10, we see that there is

a difference in that the slow estimator uses both the hypothesis test results

and the raw data x(t). To understand this, it is important to realize that

x(t) pro.,ides us with two types of information: the indirect information

about whether p(t) is on the left or right that is embedded in the switching
,"

behavior of x(t) and the direct information concerning which left-to-right

- "- rates -- wl and L2 or 03 and V4 -- are in effect. Indeed, consider the two-

state process depicted in Fig. 6-11. The evolution of the unconditional prob-

ability of being on the left for this process is given by

-iP 1 (t) = - [Plx(t) + c1J3(-x(t))IPL(t) + [E42x(t) + c14(l-x(t))Itl-PL(t)Idt

[cW4 - J(U3+4)PL(t)]dt + [P( 2 - 14) - (WIl+1J2-V3-V4)PL(t)IdR(t)

Compare(6-57)

% 9- Compare this to Eq. 6-56. Note that the remaining terms in Eq. 6-56 -- i.e.,

- those not captured in Eq. 6-57, yield the equation for the conditional proba-

- bility of being on the left given the data and assuming no left-to-right

t ra v it ions occur:
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xMFront-End k Digital PL(t)

IP R-5566

Figure 6-9. Front-End/Back-End Structure Arising from Slow Integration
of Optimal Estimator

x~t Front-End Batch Mk Slo Estiato

Figure 6-10. Hypothesis-Testing Front End with Slow Back-End Estimator

l V2 (t) + 1 4(1 -X(t))

Figure 6-li. The Left-Right Transit imi Ra L,,
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, dPL(t) = 8g(E)PL(t)[1-PL(t)]dt + (a-B)g(s)PL(t)[l-PL(t)]dR(t)

- g(e)PL(t)[l-PL(t) a (t) + + E-(t)] dK(t)
Al+ag(c)[ l-PL(t) ] X2+0g(c)([1-PL(t))]

(6-58)

Equation 6-58 can in fact be solved in closed form, as the sufficient

statistics in this case are essentially R(t) and K(t). Specifically, let

D(t) = Number of top-to-bottom transitions up to time t
(6-59)

U(t) = Number of bottom-to-top transitions up to time t

Note that

K(t) - D(t) + U(t) (6-60)

. rn and if x(0) =1

SD~t) =[K(t)] , U(t) LK(t)J (6-61a)

while if x(0) = 0

D(t) =K(t) U(t) FK(t) (6-61b)
L2 1' 21

Vwhere

r x 1 = smallest integer x
-.° (6-62)

L x J = largest integer 4 x

Define

g D(t) 8g U(t)
"L(t) e-Bg(s)t e(a-a)g(e)R(t) I + J I + ) (6-63)
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Then L(t) is the likelihood ratio

Pr(X(T), 'r~t jp(t) on the right)

L~)=Pr(x(-r), -r~t p(t) on the left) (-4

assuming that no left-to-right transitions can take place. In this case, it

9 is easy to see that

PL(O)
PL(t) -(6-65)

Z' PL(O) + 1pL(O)IL(t)

It is a straightforward exercise to verify that Eq. 6-55 satisfies Eq. 6-58.

We can now describe precisely the front-end/back-end structure depicted

in Fig. 6-10. Again, let (k-1) T(e) < t < kT(e) denote the k-th batch of data

* for the front-end processor, and let

Rk =R(kT(e)) - R[(k-1)T(e)I (6-66a)

Dk = D(kT(e)) - D[(k-l)T(e)] (6-66b)

Uk = U(kT(e)) - U[(k-l)T(e)] (6-66c)

Kk = K(kT(e)) - K[(k-l)T(e)] (6-66d)

N Lk = likelihood ratio based on (6-66e)

the k-th batch of data

PO

Lk e -6~)~)e (Ia~~ R +tc) )k (I+8() .U (6-67)
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The front end then produces an output based on the decision rule

mk=R

Lk 1 (6-68)
A <

M= L

Also let

PL(klj) Prob[process on left at time kT(e) Ims, sjj] (6-69)

The prediction step of the algorithm consists of integrating

PL = - [Ilx(t) + U3(I-x(t))IPL
*(6-70)

+ e[P2x(t)+ (1-x(t))1(l--PL)

from t = kT(e) to t = (k+l)T(e) using as initial condition pL(klk). The

update step is then

' *LL( ) PL(k+l Ik)

PL(k+llk+l) = (6-71a)

* *LL(E) pL(k+llk) + OLR[1-PL(k+llk)]

if mk =  L  , and [I_ LL( r)] PL(k+l k )

PL(k+llik+l) =(6-71D)

-[I-OLL(e)]PL(k+lIk) + 1l-OLR()][1l-PL(k+lik)]

* if mk = R, where *LL and OLR are defined in Eq. 6-32. We note that in this

case it is possible to carry out some of the analysis associated with theseL quantities, and this is done in Appendix C.

Note that in general the exact computation of the prediction equation

(Eq. 6-70) involves the complete x(t) sample path -- essentially we are

switching between two sets of rates, i.e.,
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;L(t) F[lxt 21X01PLt]
c[Aix~t +A[1-xt)] [ j(6-72)

PR(t)j PR(t)

where

-ill P2-I3 1
Al Pl L j2 A2  P3 L 44 (6-73)

if

111/12 = 13/14 (6-74)

i.e., if the steady-state probabilities associated with Al and A2 are the

same, then Al and A2 commute~ and the solution of Eq. 6-72 involves only the

integral of x(t), namely R(t). If Eq. 6-74 does not hold, this isn't true

exactly, although for cT(E) small, the difference between the solution to

Eq. 6-72 at t = (k+l)T(c) from initial condition pa(klk) at t -kT(c) and the

approximation

pL(kI k)

is O(e 2 T2 (e)). If this is ignored, we can use Eq. 6-75 which in expanded

form is as follows:

PL(k+llk) e- c[i l T(c) + 'F2 Rk+lJ P(klk)
(6-76)

[114 T(c) + (1.-13)Rk+1I1I - e[ T( c) + 4'2 Rk+l]

p £4'1l T(c) + 0t~2 Rk+l
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where

I = 3 + P4 , 02 UI +  2 - P3 - 4 (6-77)

Note in this case that only Rk+l, and not the entire x(t) sample path, is used

by the slow estimator.

Finally, as in the preceding subsection, we can replace the hard decision

rule (Eq. 6-68) by a Bayesian update. In this case, the front end again cal-

culates Rk, DIk, Uk and Lk as in Eq. 6-67. The back end then performs a pre-

diction step using Eq. 6-70 or the simpler (and exact if Eq. 6-74 holds and

otherwise approximate) version (Eq. 6-76) and a measurement update step of the

following form:

~pL(k+l I k)

PL(k+lIk+l) .PL(k+lk) (6-78)
Pt(k+llk) + [I1 PL(k+llk)]Lk+l

r',9
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SECTION 7

A. ASYMPTOTIC ANALYSIS

In this section we present some results on the asymptotic analysis of

the white noise filtering problem described in subsections 6.1.1 and 6.2,1.

To facilitate the analysis, we repeat the key equations here in somewhat more

*.' compact form. In Eqs. 6-8 and 6-9 we presented the exact optimal filtering

equations in a particular set of coordinate, while in Eqs. 6-16 and 6-17 we

presented the corresponding equation for a particular aggregate approximation.

By eliminating dy(t) in Eq. 6-16 through the use of Eq. 6-9a, we obtain the

following:

dpL(t) = EA(pL(t),6 1 (t),6 2(t))dt

+ g(E) B(pL(t),6j(t),62(t))dv(t)

dPL(t) = eA(pL(t),O,O)dt + g(e) B(pL(t),O,O)dv(t)
(7-1b)

+ g2(6) C(PL( t)pL(t),6l(t),62(t))dt

d6l(t) -- Al 61(t)dt + ED(pL(t),6j(t),6 2(t))dt
(7-1c)

* + g(e) F(pL(t),6j(t),62(t))dv(t)

d62(t) -- A2 62 (t)dt + Gpt)6t,2()d

+ gME) J(pL )t5()6 2(t))dv(t) (-d

where dv(t) in Eq. 6-9a is a standard Brownian notion and where
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A(pL,6 1,62 ) = Y2 - (Y1 + Y2 )PL - nl 61 + n2 62 (7-2a)

B(pL,6 1,62 ) = I - H(pL,6 1 ,62 )]pL + A61 (7-2b)

H(pL,6 1 ,62 ) = fR + (fL - fR)PL + A[6 1 + 621 (7-2c)

C(PL,pL,6 1 ,62 ) = IlL- H(PL,O,O)]PL [H(PL,0,O) - H(pL,61 ,62 )] (7-2d)

D(pL,6 1 ,62) - n5 - n3 61 + 04 - n5 )PL + n6 62 (7-2e)

F(pL,6 1,62 ) = Ei PL + 2 61 - H(pL,61 ,62 )61  (7-2f)

__ *. G(pL,61,6 2 ) = n8 - n4 62 + (0o- n8 )PL + n9 61 (7-2g)

j(pL,6 1 6 2) = - p L + 64 62 _CpL,61 ,62)62  (7-2h)

.[.p. ' rNote that the aggregate approximate probability pL is now coupled to the exact

V quantities, as we want to write all equations in a form driven by the true

innovations.

What we show in this section is that the approximate filter (Eqs. 6-16

-. and 6-17) is a good one, in that

. q(t) = pL(t) - PL(t) (7-3)

.4 "is small compared to the amount of information contained in pL or PL" More

. precisely, let

Y2Iu~P~t =pL(t) - _____=pL(t) - .(7-4)

,S. .. . -, l + Y2

Then U(t) is precisely the deviation of pL(t) from its steady-state value if

no measurements were available. We essentially show that q(t) is quite small
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in relation to p(t). In preparation for a precise statement of this type,

we transform variables in Eq. 7-1 using Eqs. 7-3 and 7-4 and also change to

3 the slow time scale. The result is the following set of equations on which

our analysis will focus:

g(C)
dp(t) = - r p(t)dt + K(6 1 (t),6 2 (t))dt + N(p(t),61(t ) ,62 ( t ) )dw ( t )

(7-5a)

Al g( C)

d61 (t) = - - 61(t)dt + P(U(t),6 1 (t),6 2 (t)dt) + _ Q(1 (t),6 1(t),6 2 (t))dw(t)

(7-5b)

A2  g( C)
d62 (t) = - 62(t)dt + R(V(t),6 1(t),6 2 (t)dt ) + - S(V(t),6 1(t),6 2 (t))dw(t)

C V

(7-5c)

dq(t) = - r q(t)dt + K(61(t),6 2(t))dt + g() M(q(t),6l(t),6 2(t))dt

C

g(s)

+ - U(q(t),V(t),6 1 (t),6 2 (t))dw(t)

(7-5d)

where w(t) is a standard Brownian motion, and

r= Y + Y2 (7-6a)

K(6 1 ,62 ) - nl 61 + n2 62 (7-6b)

M(q,6 1 ,62 ) - (fL - fR)q + A(6 1 + 62) (7-6c)

N(p,61,62) [(fL - fR)( I-* P) - A(61 + 62)]I~I+ * ] + A61 (7-6d)

P(,61,62) n5 - n3 61 + (n4 - n5 )(V+) + 96 62 (7-6e)
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Q(ii,61 ,62) = E(u+) + E2 61

- [fR + (L - fR)(P+*) + A(61 + 62)]61

R(u,61,6 2 ) = n8 - 7 62 + (nIo - 18)(1+) + l9 6i (7-6g)

S(11,6 1,62) = E3-E(+)+ E46 (-h(7-6h)

- [fR + (UL - fR)(" + *) + A(6 1 + 62)162

U(q,p,61,62) = (fL - fR)q[1-2(p+*) + q) - A(61 + 62)( Vh) + A61  (7-61)

Theorem: Suppose yI Y2 * 0 and fL * fR" Further suppose that

q(0) = 0 (i.e., pL(0) = PL(0 ), and define

0 if 612(0) + 622(0) = 0

"= - n [9 otherwise .

Suppose that g(e) = o(el/2) and e = O(g(e)), i.e.,

lim =e) = 0 ,lim exists . (7-8)

Then for c sufficiently small, there exists a positive

constant C so that

sup E[q 2(t)]
tot o (c).( C £ (7-9)

sup 
E[p2(t)<

t>T

for any T>O.
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Let us make several comments about this result. First, the assumption

that yI Y2 * 0 simply means that the 2-state aggregate process in Fig. 6-2 has

a nontrivial ergodic distribution, while the condition fL * fR states that the

aggregated version of the measurements does contain at least some information.

Also, from Eq. 7-7 we see that the need for to(e) is due entirely to boundary-

layer effects caused by initial conditions on 61 (t) and 62 (t). Finally note

that the assumption that q(O) = 0 is reasonable, as it certainly makes sense

'. for the exact and approximate filters to be initialized identically.

What this theorem states is that for measurement quality in the range

specified by Eq. 7-8, the mean square deviation is order e in size when corn-

pared to the mean-square information content as measured by p(t). The inclu-

sion of the arbitrary time T in Eq. 7-9 in fact implies that this information

content persists at a level far above that of the deviation q(t). Note also

that as should be clear from the proof, this result can be extended to the

case of poorer measurement quality, i.e., g(c) = o(E), with an appropriate

change in che right-hand side of Eq. 7-9. The order lI/ 2, however, represents

a critical cut-off point at the upper limit of measurement quality. This will

L also be seen in the results presented in the next section.

Proof of Theorem: For notational simplicity in what follows, we will use

simplified notation of the type

R(t) = R(u(t), 61(t), 62 (t)) (6-10)

and will refer to the specific arguments of such a function only when neces-

sary. Also, let us note an extremely important fact: the processes for which
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fr! we are solving in Eq. 7-5 all represent differences between two probabilities,

i.e., we know a priori that

10(0 1l, 161(t0 1, 162(t)1, jq(t)l 4 1 .(7-11)

at -,

Consequently, since the quantities in Eqs. 7-6b - 7-61 are all first- or

second-order polynomials in these processes, we see that they are all bounded,

i.e., there exists a positive number K < - so that

; .' IK(t)j, IM(t)j, IN(t)j, IP(t)j, IQ(t)l, JR(t)j, IS(t)j, JU(t)j < K •

(7-12)

Our proof now proceeds by first bounding the sizes of 61 (t) and 62 (t),

4 then q(t), and finally p(t). To begin, we note from Eq. 7-5b that

LAlt/c 1(O ) t -T/ g(e) ft eAl(t_ r)Q(~ t

61(t) = e 61() + f e- l /P()dT +- f e.Q()dw(t)
0 '-E 0

to 
(7-13)

X Then, using the fact that

M M

( xi) 2 < M I xi2  (7-14)

i=1 1=1

we obtain

0 E[6 1
2 (t) l 4 3 e-2Alt/cE[6t2(O)1

+ 3 ftf e- Al[(t-T)+(t-a)]/ E[P( )P(a)]ddc (7-15)

0 0

0, + 3 g 2 (c) fte2Al(t)/-E[Q2( )]dT

0
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Using Eqs. 7-11 and 7-12 we obtain

2

E[6 1
2 (t)1 4 3 e 2 At/eE[6 1 2(0)I + 3 K2 L e AI(t-t)/s d]

+ 3 g
2 (6)K

2  t-2Al(t--)/E 
0 .

•E
"- 0

Then using the fact that

t t a i

e-= f e-adT 4 f e-dr = (7-17)

0 0 0 a

we obtain the bound

E[6 1
2 (t)] 4 3 E[6 12(O)]e-2Alt/c + 3 K

2E2 + 3 K2 g2 (E) (7-18)
A12  2A1

In an analogous fashion, we obtain the bound

Et6 2 (t)] < 3 E[6 22(O)]e
- 2A2t/E + 3 K2 C2 + 3 K2g 2 (c) (7-19)

2 A22  2A2

Consider next q(t). From Eq. 7-5d and the fact that q(O) = 0, we havep

. q(t) = t- r(t-K) d + g2(E) fer(t-t)M(tOd

0 0 (7-20)

+ g( f t e-r(t-T)gU(T)dw(T )

Using Eq. 6-14, once again we obtain
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E[q 2(t)j < ftf e-r[(t-T)+(t-0)E[K(T)Kco)]dTda

0 0

+ 3 L-C ffe- [tT+t() E[M(T)M(G)Jdrdo (7-21)

+ 3 g 2(c) fte 2r(t-T )E[U2TIdT

Then employing the inequality

1
Ixyl 4 - (x2 + y2) (7-22)

we find

E[q 2 (t)] 4 3 f j er[t)+t)E[K2(T)I]dT
0 0

+ 3, C f fe IE[M2(T)]dT (7-23)

E

0

Again using Eq. 7-17 we obtain

0

+ g4() 1 e '(t-T)EM()d (7-24)

3 g2(c) t e 2r(t-T) E[U2(T']dT
E: 0
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Let us now examine the first integral on the right-hand side of Eq. 7-24.

From Eqs. 7-6b, 7-14, 7-18, and 7-19 we see that

E[K 2 (t)] < 2 rl2 E[6 1
2 (t)] + 2 n22 E[6 2

2 (t)]
. A1 E[6 2

2 (0) + 622(0)]e-2 At/c (7-25)

+ A2 e e + A3 C2 + A4 g
2 (s)

where A = min(AI,A 2 ) and A1 , A2 , A3 , A4 are appropriate postive constants.

Also, from Eq. 7-8 for c sufficiently small*

.. E[K 2 (t)] 4 A1 E[6 1
2 (0) + 622(0)]e - 2 At / c

(7-26)
Aq + A2 e e-At/ + A5 g2(2)

* for same constant A 5.

Using Eq. 7-26 we then have that

%. t~ -r(t- )EK

it e E[K 2 (T)]dT

0 2(') c e-rt (-/~
[AI{E[6 1

2 (O)] + E[622 I + A20 - (I e)

2A-cr (7-27)

A5 g 2 (s)

+ (I -1 e )

* AI{E[6 1
2 (O)] + E[62 2 (0)J}s e- rt

, . + A6 g2 (s)
2A

- where we have again used Eq. 7-8 and are assuming c sufficiently small.

*This is a typical place where we use the fact that g(s) is no smaller than

order E. If g(E) - 0(e), the last term in Eq. 7-26 would be A5 C2.

100

-L. .A



ALPHATECH, INC.

We next examine the second integral on the right-hand side of Eq. 7-24.

In this case we will be a bit more careful. Specifically, from Eqs. 7-6c and

7-14 we have that

it _ t -) 2

f e-r(t-T)E[M2(T)]dT 4 3(fL - fR) 2 f e- ( q2-)]dT

0 0] , (7-28)

+ 3 A2 f e t)E[612( ) + 62
2 (r)}d7

0

In a manner analogous to the calculations in Eqs. 7-25 - 7-27, we can bound

M _ the second integral on the right-hand side of Eq. 7-30 in exactly the same

form as in Eq. 7-27. Thus for z sufficiently small

t 3(fi. ) 2  fte -r(t T)E[q2f e- ~-XE[M2(T)]dT 4 3(f L - fR) 2(T)ldT

-. 0 0 (7-29)

+ A7 {E[6 1
2 (O)] + E[6 2

2 (0)]}c e- rt

+ A 8 g
2 (e)

Examining next the third integral on the right-hand side of Eq. 7-24 and

" ~using Eqs. 7-61 and 7-14, we have

, , - t _2 ~ _ ) [t -2"'  fe 2 r(t-T) U2(t)]d, 4 3 f e 2 (t-T)E[dl2(T)q2()Id r

* 0 0

•M *:'-. t _2

+ 3 f e r(t-T)E[d 2 2(T) 61
2 (T) + d 3

2 (-)6 2
2 (T)]dT

0

(7-30)

." ,.where

dI(t) = (fL - fR)[l-2( (t) + p) + q(t)] (7-31a)
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. d2 (t) = A(G - (t) - T) (7-31b)

d 3(t) = A(M(t) 4 4) • (7-31c)

Thanks to Eqs. 7-11 and 7-12, d1 (t), d2 (t), and d3 (t) are bounded so that we

can obtain a simple bound

f e- 2r(t-*)E[U2(T)]dT 4 A9 I e-2 r(t-T)E[q2(T)]dT

0 0 (7-32)
+ A10 ft e2r(t -T)E{ 6 12(T) + 622(T)}d(

0

and then again in a manner analogous to Eqs. 7-25 - 7-27, we can obtain the

following bound for 6 sufficiently small

ft -t rtT t -2r(t-T)

f e-2 (t-)E[U2(T)]dT < A9 f e E[q 2 (T)]dT

0 0 (7-33)

+ All{E[6 1
2 (0)J + E[6 2

2 (0)]}c e
- 2rt

+ A12 g
2( )

1. Combining Eqs. 7-24, 7-27, 7-29 and 7-33 (and performing a few addi-

tional, straightforward bounds), we obtain a bound of the following form for

.e sufficiently small

.'.* -r
... . E[q2 (t)] & A13 g2 (e) + A 14 E{6 1

2 (0) + 522 (0)}c ert

, .~ ,1;fer(t-T) [2(
+ A1 5 g-(-) fe-Elq2(T)JdT (7-34)

EO 0

+ A16 g
2  e2 fe 2 (tT)E[q2(T)Jdx
%0
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We can now use Eq. 7-34 to obtain a first bound. Specifically, let

M = sup Efq 2 (t)] (7-35)

tO

Then using Eqs. 7-17, 7-34, and 7-35, we obtain

A1 5 M g
4 (E) A1 6 M g2 (E)

M A1 3 g
2 (c) + A 14 E{6 1

2 (0) + 622(0)} C + + (7-36)

~i.e.,

A1 3 g
2 (c) + A1 4 E{6 1(O) + 62

2 (0)}C
(. A1 7 e (7-37)A1 5 M g4 (c) A16 M g2 (e)

r C2 2r E

for E sufficiently small. Using this bound in the two integrands in Eq. 7-34

and using Eqs. 7-17 and 7-37, we see that

E[q 2 (t)) < A13 g2 (e) + A 14 E{6 1
2 (0) + 62

2 (0)}E e-rt

A1 5 A1 7 g
4() A1 6 A1 7

+ + g2 ( ) (7-38)

SA 1 8 g2 (c) + A1 4 E{612 (0) + 622 (0)}E ert

where the last inequality follows from Eq. 7-8 and is valid for c sufficiently

'7 small. From this we immediately see that

U'p sup E[q 2 (t)] < A1 4 g
2 (e) (7-39): _ " t> to( E)

where to(E) is given by Eq. 7-7.
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Now we turn our attention to pi(t). Without loss of generality, assule

P(0) - 0 (this is the worst case coresponding to no prior information). Then

f rom Eq. 7-5a

lip t g(E) r t T
,7) f er K(T)dT + f e-r(t-)N(T)dw(T) . (7-40)

0 / 0

First we look at the mean of p(t):

E[e(t) r(tT) E[K(T)]dT (7-41)

0

Then

t r~-)t r~-1/2
tE[u(t)] < J e-  I E[K(T)]fdt < {E[K2( ) (7-42)

Then, using Eq. 7-26 and the fact that for xi 0

M M
"J'( Ix,)112  (x,)1/2 (7-43)

"ifil i=l

we find that for e sufficiently small

IE[p(t)jl f e [Bi e + B2 g(c)]dT

|0

e-rt
BI c e- ( c B2 g(E) -rt, (7-44)ff( - e ( r A / c ) t )  + - e t

, A-cr r -

0' B3 g(c)

', "-where the Bi are positive constants and again we have used Eq. 7-8 in the

last step.
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V*. Next we examine E[v 2 (t)j. To do this, let

t
X = f e-r(t-T)K(T)dT (7-45a)

0

g( E) t
, g)y = - f e -(t-T)N(T)dw(T) " (7-45b)

/ '0

N' "" Note also that from the analysis in Eqs. 7-22 - 7-27 together with Eq. 7-43,

. we can deduce that

' % A E[612(0) +62 
2(0)1e e

. {x2)}I/2+ + A6 g2 ()
l/2 2 A - 1/2 (7-46)

2-)2( 12rt/2

- B4 16 1
2 (0) + 622(0)] et + B 5 g(e)

Next, let us obtain an upper bound on E(y 2 ). Specifically, using Eqs. 7-12

and 7-17

F E(y 2 ) . g 2 (e) fte-2r(t-T)E[N(T)2]dT

0 (7-47)

<-, K2 g 2 (c) A B6 2()

2r' c E

N' Now, since p(t) - x+y, we can obtain the lower bound

E[L 2 (t)l = E[(x+y)2J

> E(y2 ) 2{E(x2)}1/2 {E(y2)}1/2

- E y2 2/-- 6 -g(B +- -rt/2

SE(y2 ) {B4 E[6 1
2 (0) + 622(0)1 V e + B5 g()}

-. (7-48)
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We now proceed to find a lower bound on E(y 2 ). To begin, note that for t~l

i "  .'-Now from Eq. 7-6d

oN(t) = CofoE + Cl(t) P(t) + C2 V 2 (t) (7-50)
, p.

, pwhere

7 Co(t) - [(fL - fR) (1-) - A(6 1(t) + 62 (t))] w + A61(t) (7-51a)

Cl(t) = (fl - fR) (1-2*) - AL 1(t) + 62(t)] (7-51b)

C2 fR - fl (7-51c)

Substituting Eq. 7-50 into Eq. 7-49 and discarding several nonnegative terms,

we obtain

t !:'.i .:: :-. ..: L 2 92(,) fte- 2r(t-T) .o()+ (, , C

E~y~j ; e rt1Ejc 0 2(T) + 2 CO( T) Cl1 U) W( T)

+ 2 CO(T) C2 112(T) + 2 Cl(T) C2 IJ3 (T)}dT (7-52)

From Eq. 7-51a

CO 2 (t) - (L - fR) 2 (I-4)2 ,2 + 2(fL - fR) (1-4) *A[6 1 (t) - 61(t) - 1 62 (t)]
'.

+ L2 [61(t) - , 61(t) + * 62(t)1
2

> B7 - B8 151 (t) - 6 61 (t) - 4 62 (t)j (7-53)

Vjhere B7 (fL- fR)2 ( 1- ,)2 ,2 and B8 = 2I(fL- fR) (1-,),AI are positive

Constants . Thus
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E[C 0
2(t) > B7 - B8 E[16 1(t) - p 61(t) - 6 62(t)I]

P B7 - B8 1E[61(t) - p 61(t) - 62(t)12}1/2

; B7 - Bs{B9 E[6 1
2 (0) + 622(0)]1/2 e-At/E 

(7-54)

+ B1 0 Ci/2 e-At/2E + B11 g(E)}
p+

where the last inequality is obtained in the same manner as Eq. 7-26 followed

by an application of Eq. 7-43. Note that is we define

-... - 0 if 612(0) + 622(0) = 0

- £n g() otherwise

IThen

E[C 0
2 (t), > B1 2 > 0 for t > ti(c) (7-56)

Note that for c small enough tl(c) = to(c) = 0 or tl(c) << to(c). Now, from

Eqs. 7-52 and 7-56 we have that for t > max(tl(c),l)

t

E[y 2] > 12 g2(c) - 2 g2 (F) J E{Co(T)C 1(T)u(T) + CO(T)C 2 W2(T) (7-57)
C F t -I

+ CI(T)C 2 P 
3 (T)}dT

Since Co(t) and Cl(t) are bounded and Ij(t)' 1, we deduce that

.+' t

E~ 2 , g2(E) _ g2(91 ) t

E(y 2 ) • B1 2  ) 13 ( ;IE[W (t)] + E[w 2 (T)] dt (7-58)
.F t-1

Then t rom Eq. 7-44 we have that tor t • max( t1 ( - ), )

+1 1
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E(y 2 ) > B1 2 g
2 (c) _ B3 B13 g3() B13 g2() t

ee t-I (7-59)

> B1 4 g2 (e) B13 g
2 (s) ft[ 2  ]

t-

where B1 4 > 0 and e is sufficiently small.

Combining Eqs. 7-59 and 7-48, we have that for t P max(tl(c),l)

2-t) 92(E) g2(e_ ) ft~2()d
% E[V2()] ;s B14 B13

t-i (7-60)
B+g ert/2 g2(c)

B15 E[6 1
2 (0) + 622(0)1 g() e - B16

Then for t > max(to(c),l) and c sufficiently small

-' .g 2(c) g2(e) t~

E[2(t)] B1 7  - B1 3  J E[v2(T)]dt (7-61)6 t t-I

where B1 7 > 0.

Now, let T be any time > 0 and define

N = sup E[V 2 (t)] • (7-62)

t>T

Then, using Eq. 7-61 we obtain

N sup E[j2(t)j > B1 7 92(c) B13 N g2(c) (7-63)
. t~max (to(c),T+1) C E

from which we deduce that

- N ) BIB (7-64)

- 10
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with B18 > 0 and for e sufficiently small. Combining Eqs. 7-39 and 7-64 com-

pletes the proof of the theorem.

rIn the next section we present simulation results that corroborate this

result and that in fact suggest several other, stronger results. Several con-

jectures are presented in the conclusions.

q09
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SECTION 8

MONTE CARLO ANALYSIS OF FILTERING PROBLEMS

In this section, the simulation of the filtering techniques proposed in

the previous sections are presented. Both the techniques used to simulate the

processes of interest and the filters themselves are described, followed by

the results. The goals of the simulations were two-fold. First they were

intended to provide support for results and conjectures regarding the quality

of various filtering approximation schemes. Secondly, they were intended to

clarify the types of phenomena that can occur in filtering problems involving

processes with various time-scale separations, noise levels and information

rites. As we will see, the results obtained from the simuations support the

results of the previous section as well as suggesting several additional

'* conjectures.

All simulations were carried out on a PC's Unlimited 286 personal

computer. Simulation routines were written using Turbo Pascal.

8.1 Simulation Techniques

Before discussing specific simulations we describe the techniques required

to simulate both the processes of interest and the filters themselves. The

techniques of interest relate to the simulation of Wiener Processes, Markov

Processes and stochastic differential equations.
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8.1.1 Noise Processes

In the simulations we need to generate increments of Brownian motion

processes. These increments were generated by manipulating samples obtained

from a uniform random number generator. The sample values were drawn from a

uniform distribution on [0,I], summed and scaled to approximate a value drawn

from a Gaussian distribution. The scaling factor Q was given by

-- Q = (12 At (8-I)
"" N

where I is the intensity of the noise process, At is the time increment

between sample times in the simulation, and N is the number of values drawn

-" from a uniform distribution in order to generate a simple, approximately

Gaussian random variable. A nominal value of N = 10 was chosen for these

- simulations.

t8.1.2 Markov Processes

For each of the filtering simulations described in Section 6, a sample

path for the 4-state Markov Process of Fig. 6-1 is required. -he generation

of a sample path for a general continuous-time Markov process can be accom-

plished by generating the sequence of successive states that are visited and

the time intervals between the transitions from state-to-state in the sequence.

Specifically, let xN be the state after the N-th jump and tN the time of the

N-th jump, we can define TN to be the N-th holding time for the system and Pij

* the conditional jump probabilities where:

=TN  tN - tN_ 1  (8-2)

Pij = Pr(xN=j I xN- 1 = i} (8-3)
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The generation of the sample path then proceeds as follows. Suppose that we

' have generated xN I = i at time tN1. Then we generate two conditionally

independent random variables (conditional on xN-l = i), namely xN and TN-

-: The required density for TN is gi'en by

P(TN I xN = ) = ATi exp{-ATi TN} (8-4)

where

=ij the transition rate from state i to state j,

and

XTi = X Aij (8-5)

j 1

The technique used to generate the required random variables was to gen-

erate a value z' from a uniform distribution on [0,1]. A new value z is then

b 2calculated as

z = - T I Rn (z') (8-6)

-% so that

Pz(Z) = XT1 exp{- XTi z} . (8-7)

To decide on the order of states entered for the sample path, another

variable Y' was drawn from a uniform distribution on [0,1]. A series of

thresholds were then calculated as

YO 0 (8-8a)

N-I ik

*Yk = - 8-8b)
-.- k=O XT.

- i

-%

5%
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The state after the N-th jump is then obtained as

N = j if Yj-1 < YN' < Yj , (8-9)

which corresponds to

,"Xik
k* i

Pij XTi (8-10)

0 k=i

8.2 SIMULATION OF DIFFERENTIAL EQUATIONS

p In order to simulate the performance of the various filtering approaches,

* it is necessary to integrate the differential equations describing the filters.

We consider two cases:

I. Filtering with noise present (Stochastic Differential Equations)

°* 2. Filtering in the noiseless environment

8.2.1 Simulation in a Noisy Environment

In the cases where we observe a process with additive noise, we generally

* -obtain filtering equations of the form

dp = F(p)dt + G(p)dv (8-11)

p

where p is a vector of probabilities, v is an innovations process with unit

intensity, and F and G are column vectors which we denote by

fl(P) gl(p)

F G (8-12)

fn(P) gn(P)
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.n order to simulate the filter (and the process of interest) on a digi-

tal computer, it is necessary to discretize time into segments of length At

and propagate the equations over each interval. The method that was chosen to

propagate the differential equation over each interval is a Runge-Kutta scheme

adapted to the problem of nonlinear stochastic differential equations [8].

*This technique integrates a differential equation from time tN to time

- iN+ 1 = tN + At as follows:
V

Sp'(tN+Il) = p(tN) + F(p(tN))At + G(pttN)) AV (8-13a)

F 7 (F(P(tN)) + F(p'(tN+I))

P(tN+l) = P(tN) + At
2

%" (8-13b)
-.- (p~tN)) + G(p'(tN+I))

+ 2A

where F is a modified function required so that our simulation approximates

Eq. 8-11. Specifically, it is known that as At+O, the solution of Eq. 8-13

converges to the solution of the differential equation

1 G(p)
dp(t) - - G(P) dt + G(p)dv = F dt + G dv (8-14)-- t 2 p --

We therefore require that

.- F(p) = F(p) - G G (p) (8-15)
- -2 p -

where

0
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3GI(p) 9Gl(p)

3Pl 3PN

3G(p)
- .. (8-16)

aGN(P) . aGN(P)

3PI 3PN

Therefore, the matrix of expressions F that we use in Eq. 8-13, differs

from the matrix F in the equation describing the process we wish to simulate.

SWe proceed by providing the equations that were used to simulate the various

filters conjectured for the noise-corrupted observation model.

I. EXACT OPTIMAL NONLINEAR FILTER

The original equations were defined in Eqs. 6-8 and 6-9 as

dpL(t) = E1Y2 - (YI+Y2)pL(t)]dt + e[-nl 6 1(t) + n2 62 (t)]dt

+ g(c) [fL - h(t)]pL(t)dv(t) + g(z) A61 (t) dv(t)
,.

d6 1(t) = -AI6 1(t)dt + E[n5 - n3 61(t) + (n4 - n 5)PL(t) + n6 62 (t)]dt

, *.. + g(c)[ l PL(t) + 2 61 (t) - h(t) 6 1 (t)jdv(t)

d6 2 (t) = -A 2 62 (t)dt + C[118 - 4 62 (t) + (nlo - 1 8 )pL(t) + 19 61(t)]dt

4
+ g()[E3 - E3 PL(t) + i4 62 (t) - h(t) 62 (t)]dv(t)

Casting this in the format of Eq. 8-14 we obtain

AI'V
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E.Y2 - (Y 1+Y 2 )pL(t) + n2 6 2 (t) - nl 6 1 (t)]

F(p) (Al + e n3)61(t) + e[(n4 - 5)pL(t) + n5 + n6 62(t)

Fp-(A 2 + E n7)62(t) + E[1l - 8))pL(t) + n8 + n9 61(t)]

(8-17a)

FL h(t))pL(t) + A6 1
-G G(p) = g(E) EI pL(t) + (E2 - h)6 1  j (8-17b)

3( I - pL(t)) + (4 - h)62j

0G(p) (fL - h) - (fL-fR)PL(t) A(I - pL(t)) -ApL(t)

p = g(E) El - (fL-fR)61(t) - (h + A61(t)) -A6 1(t)

ap*

.- 3 - (fL-fR)62(t) -A6 2 (t) 4- (h + A62(t))
12

(8-18)

and lettingF = F(p) • G(_), we can apply the propagation equation
2 ap

given by Eq. 8-14. The increment of time, At, was restricted to be, at most,

1.0 percent of the mean time between the fastest transitions of the Markov

Chain.

II. TWO-STATE APPROXIMATE FILTER

This filter was described in subsection 6.1 and satisfies Eqs. 6-16

and 6-14. It was simulated in exactly the same manner as the exact filter

fdescribed above except that the calculations are simplified because 61(t),

6 2 (t) are assumed to be zero. We therefore obtain

11
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,., F(PL(t)) = E(Y2 -(Yl+Y2)PL(t)) (8-19a)

G(PL(t)) = g(c) (fL-fR) PL(t) (1 PL(t)) (8-19b)

, -G(PL(t)) g(E) (fl-fR) (1 - 2 PL(t)) (8-19c)
" PL

a nd

F(PL(t)) =(Y2 - (Yl+Y2) PL(t))

- - g2( ) (fL-fg) 2 PL(t) (1 - PL(t)) (1 - 2 PL(t))
2

- (8-19d)

, Using these equations, Eq. 8-14 was applied once again.

111. FRONT-END/BACK-END PROCESSOR

Simulations were performed for the front-end/back-end processor for which

the front end calculated the likelihood ratio, L(t) using the equations given

by Eq. 6-26, with dvR, dvL given by Eq. 6-25b. Once again, Eq. 6-26 is a sto-

chastic differential equation driven by white noise and requires a corrected

drift term for the Runge Kutta technique. If we define p(t) as

L(t)

p(t) = t) (8-20)

LQRT(t)

where L(t), QLT, QRT are defined as in Eq. 6-26, we can use our previous

Zja formulation to simulate
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dvR( t
dp(t) =F(p(t))dt + G(p(t)) dL iL

where

F' (p) = 2 (Xl±A2) QLT(t) J(8-21a)
X4-(X3-4X4) QRTMt~

and

G(p(t)) =LR(-P) GL(-)j g(E)(hL(t)-hR(t)) L(t) 0j

0 .g(c) (ai hL(t)) QLT

-N g(r) (ai - hR(t)) QRT0

with G segmented into two column vectors, one associated with each of the two

processes vL, yR. Note that vL and yR are not innovations processes. Rather

we have that

IdvR(t dy(t) - g(e) hL(t)dt

LdvL~ :: dLy~t - g(e) hR(t)dt]8-)

where

*hL(t) = + (ci-6) QLT(t) (8-23a)

=Rt + (ai-0) QT 82b
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' and the true innovations is given by: "v

dv(t) = dy(t) - g() h(t)dt

Since dvR and dvL differs from dv only by a drift term, we can simply obtain
.

the correction terms corresponding to yR and vi and add them. Specifically
bq.

~ ~ r~~F() (hL(t) -hR(t)) g(1c-3Lt-g)(r)L)

- - 0 0 0

U.0 0 g( E) (a)- () (-2QRT( t00]

(8-24a)

.4

3aGL

' 2 =)0 g(QL ) (a-) (-2QLT(t) ) 0

"(p -0 0 0

; ': "(8-24b)

,.,,Finally, we obtain F(p) for simulation purposes by summing the correction

... .".-terms associated with dvjL and dvR to obtain:

. -Y2 g 2( E) (a_8)2 NUM~t - QRT(t) (1_2QRT(t)) L(t)

.'% " '"F(P) 2 (Xl+X2) QLT( t )  2 -- 9 g(F) QLT(t) (IQLT(t))(_2Tt)

U.

X4 - (X3+X4) QRT(t) - g2(6) QRT(t) (l-QRT(t)) (I-2QRT(t))

Once again, the increment of time, At, was small (at most 10 percent)

compared to the mean time between the fastest transitions of the Markov Chain.

The initial values of L, QLT and QRT were chosen according to Eq. 6-30.

Once a value was obtained for L(t) on each interval, that value was used by
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- another routine which performed a prediction calculation using Eq. 6-34 and a

,~ * "measurement" update using Eq. 6-37. Both of these calculations involve only

straightforward computations.

" IV. FRONT-END/BACK-END PROCESSOR WITH AVERAGING ASSUMPTION

The simulation of this filter is very straightforward, using Eqs. 6-46

and 6-47 to obtain L(k) on each interval. A fast routine simply calculates

the integral of dy(t) by performing a summation of the form:

y = dy(T) (8-25)
-" kg(c )#; < (k+l)T(e)

"" The "slow- routine was then used to propagate the probability PL in a two-step

fashion with a prediction step and an update step as in III above.

8.2.2 Simulation in a Noiseless Environment

- . In general, simulation of the filtering equations for the noiseless envi-

ronment is simpler than in the noisy environment because the equations are no

longer driven by a Wiener process.

I. EXACT PROBABILITY EQUATIONS

The exact equations for the probabilities of being in the left or right

- states are given by Eq. 6-49. Equations 6-49a and 6-49b are ordinary differ-

*0  ential equations which can be solved using a simple integration routine. In

this case the Runge-Kutta technique requires the calculation of

PL(t+At) = PL(t) + PL(t) • At (8-26a)

-p. 1 [
.. , t+At= PL(t) + [L(t) + PL(t+At)1 At (8-26b)
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Fhetv steps were implemented with time intervals such that At was small corn-

pared to the time between the fastest transitions in the Karkov chain. The

i- , ,i ions were performed between jump times with an additional integration

r t: residual time XtN just preceding each jump:

-6

LNtN -
AtN = (tN - tN~l) - At (8-27)

.

L x J denotes the largest integer • x

At )ump times, Eqs. 6-49c - 6-49d were used to update the probabilities.

Ii. FRONT-END/BACK-END PROCESSOR WITH AK, ARt

In this case, the processor structure in which ARt and AK, the increments

ii the upper state residence time and the total number of counts respectively

ire determined for individual segments of time by a fast processor. These

valties are then used by a slow processor to calculate state probabilities.

- .The front-end processor determines two quantities, R(t) and K(t) where

f. +

, , R(tN) - R(tNI) + (tN - tN-1) x(tN_.) (8-28a)

K(tN) = K(tN-1) + Ix(tN) - X(tN-1) (8-28b)

x(tK) 0 if p(t) is in state 2 or 4 at time tK.

; i if p(t) is in state I or 3 at time tK.

),it these quant ities are obtained for a time interval [kT( c), (k+l)T( )),

k. ,isd by the slow processor to update probabi Iti t es us ing the
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ditterential equation ,i ,en by Eq. 6-56 . In this case we must be careful when

i nt egrat ing the equat ioll because of the dK( t) driving term which represei:ts

in:rt-ments in a jump process. The equations that we would normally implement

ti r', inl t het standard Runge-Kutta tormat

p.(t+At) PL(t) + F1(PL(L))LRt + F 2 (PL(t))At + G(PL(t))AD + G2 (PL(t)AU

* -(8-29)

using the terminology of Eq. 6-59 to rewrite Eq. 6-56. The second step of the

integratfon is performed using

ARt

-' < PL(t+At) PL(t) + rFl(PL(t) + Fl(PL(t+At))2

At
+ (F2(PL(t)) + F2(PL(t+At))) -

2 (8-30)

ADa- "+ [GI(PL(t)) +  Gl(PC(t+At))]
%1 2

+ G2(PL(t)) + G2(pL(t+At))] -

2

!.,-t %is inalyze the error introduced by the use of Eqs. 8-29 and 8-30. First,

4 it we pertorm Taylor series expansions of FI(PL(t+At)), etc., in Eq. 8-30 and

keep )rily terms of zeroth and first order, we have

p. (t) + F1(PL(t))ARt + F2(PL(t))At + Gl(PL(t))AD + G2(PL(t))AU

F_( Lt)ARt + F2(Lt)~ + (PL(t))AD + G;;pl,(t))AU]
2(Pt ). + GI.

,,'.' ---9 1 pLjt))ARt + F2(PL(t))tt +  GI(PLMt )AD +  G2(PIL(t))AU'1

,O. Fp P!(t))a~t +
- F2 (PL(t))At + GI(PL(t))AD + G2 (PI.(t))AUl

J:.
.- . ( 8-31 )

,.
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Now, recalling the definition of the functions Fl, F2 , G1 and G2,

FI(PL(t)) = Eki2-P4 - (vl+W2-IJ3-P4)PL(t)I

+ (a-a)g(Fe)PL(t)(i-PL(t))(83a

F2(PL(t)) = C[L4 - (W.3+P4)PL(t)J 83b

+ a g(Et) PL(t) (I-PL(t))

4 -g(6) cPL(t) (l-PL(t))
GI(PLt)- + gs)(pL(t)) (8-32c)

V -g(c) 8PL(t) (l-PL(t))
"'I .~GZ(PL(t)) = (8-32d)

X+ ag(e) (1 -PL(t))

* and substituting into Eq. 8-31 we obtain

AD -- A

PL~~t+At) +Lt + jci8g(c) P(1 PLt) + X[(2) +- c (~-P3-~)pLtI])

+~~~ ~ P8g~c) PLG-PL)) + Ui -(13-PL(t)i]B2 R 2 At D U

1 2

+ 2Lt [(a-pLAt) (l-2pL~t) AD AR +A 8 At g2 (D A 8 AU j
2l X2 XIX

IL%1

A.t

XlX (8-L33)2  X
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ITo compare Eq. 8-33 to the exact equations, consider the relationship between

APL and AL for small AL. Substituting Eq. 8-34 into Eq. 6-65, we obtain Eq.

8-35 and finally Eq. 8-36

L(t+At) = L(t) + AL (8-34)

SAL APL(t) + O((AL)2 ) (8-35)

-, PL(t) (l-PL(t))

AL OAt - (a-6)ARt + 2I AD + 2 AU] g(t) + O(g2(e))] (8-36)

Expanding the exact expression for L, (Eq. 6-63), using a Taylor expansion for

psi the exponential and Binomial theorem for the power factors, we obtain exactly

Eq. 8-36.

Therefore we see that the basic Runge-Kutta technique will be accurate to

within O(g 2 (E)).

III. FRONT-END/BACK-END PROCESSOR USING LIKELIHOOD FUNCTION

Simulations were performed for the front-end/back-end filter structures

for which L(t), the likelihood ratio described by Eq. 6-64 is calculated using

the equation given by Eq. 6-63. The calculation of L(t) is straightforward

and performed over time increments of length T(e), based upon the ARt, AD, AU

e statistics determined by the fast integrator and counters of the "front end."

These statistics were determined from the sample path in the same manner as

described for II above. The values of L(t) were calculated and passed to a

"slow routine" which calculated the state probabilities using a two-stage

process comprised of prediction and update calculations.
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, ,The prediction step was implemented using the "approximation technique"
given by Eqs. 6-76 and 6-77. For the choice of p's that was used, however

(pi=l), the condition of Eq. 6-74 was satisfied so that Eqs. 2-76 and 2-77

were exact. The update calculation was done using Eq. 6-78.

8.3 SIMULATION RESULTS

8.3.1 Probability Propagation for White Noise Model

In subsection 8.2, the simulations for four filtering techniques in the

noisy observation case were described. The results for each of these cases

are provided in Figs. 8-1 through 8-14 and are discussed below. The plots

of the filter oLtputs show two pieces of information. The "square wave" plot

shows the sample path of the system in terms of left-to-right transitions.

A high value in the plot (.75) indicates the system is actually in the left

pair of states and a low value (.25) indicates the system is actually on the

right. The probability of being in the left pair of states as determined by

the filter is superimposed on this plot. Since a large value of pL represents

a conclusion that we are on the left and a small PL that we are on the right,-a
an indication of filter performance is the amount of time that the filter

output and the sample path are both in the top or bottom of the plot. This

provides a qualitative measure of how often the filter reaches the correct

"conclusion."

r I. EXACT FILTER

: -The simulations for this and all other white noise cases used the param-

O eter values given in Eq. 8-37
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XI X4 1 (8-37a)

A = A3 = 5 (8-37b)

,. = 02 =  113 114 1 (8-37c)

At 0.1 (8-37d)

0.01 (8-37e)

where At is the time increment between calculations.

7- The results for four simulations are provided for the exact filter case.

Each simulation was done with an identical sample path, but with different

values for g(e) the signal magnitude in the output. With a noise intensity

of 1, Figs. 8-1 through 8-4 provide results for g(e) = 1.00, 0.30, 0.10, and

0.03 corresponding to 0 , 5l/4, 61/2, and C3/4, respectively.

Several features of the results are worth noting. The filter appears to

display a "switch" type of behavior for larger values of g(c), particularly

g(c) = 1. For g(E) = 6i/4, performance deterioriates somewhat, but still

provides a correct result in the sense that PL > 0.5 for the majority of time

that the system is in the left pair of states and PL < 0.5 when the process

" % is on the right. When the signal strength is decreased to g(c) = el/2, per-

formance becomes somewhat worse, with smaller excursions away from the uncon-

ditional probability value of 0.5 and with occasional excursions to the

incorrect side of PL = 0.5, without a transition having occurred. Finally,

when g(c) = Ei/2, performance breaks down substantially. Although the proba-

bilities move in the same general direction as in the J/2 case, excursions

from PL = 0.5 are quite small, and bursts of noise occasionally generate the

incorrect conclusion that a transition has occurred.
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II. AGGREGATE PROBABILITIES FOR WHITE NOISE MODEL

The output of the aggregate filter described in Section 6 is prescted

next for the case of c 0.01, g(E) = 0.1, 0.3 and 1.0 (Figs. 8-5 through 8-7).

The results of Section 7 indicate that for g(e) = 0(4i/2), the performance of

this filter should be asymptotically close to that of the optimal filter as

E decreases to 0. Comparison of the simulation outputs of the aggregate and

exact filters shows almost exact agreement for the cases of g(c) 0.1 (el/2)

and g(c) = 0.3 (eI/4 ). In the case of g(s) = 1, agreement was still good, but

deviations of up to 0.05 in magnitude can be found. In all cases, however,

the difference between the aggregate and the exact versions of the filter was

of much smaller order than the bound of O(g 2 (c)) derived in Section 7.

III. FE/BE SIMULATION FOR WHITE NOISE MODEL

The FE/BE model refers to the case when a sufficient statistic, L, is

calculated in batches by a front end with no apriori information. The back

end then applies a Bayesian update procedure using successive values of L.

..The simulations were done with g = 0.3 and e = .01; a case in which the opti-

mal filter performs well, but does not yet act like a "switch." The time

intervals, T(e) selected for the collection of data were 1, 3, 10 and 31 cor-

responding to E0 , E-I/
4 , -i/2 and -3 /4  respectively. The plots for these

cases are provided in Figs. 8-8 through 8-11.

The Pimulations show that for relatively small time intervals, namely

T(Pc) = I and T(c) = 3, performance is excellent, as the probabilities gener-

ated, differ from the optimal values by at most .01 for this sample path. It

is our conjecture that for g(c)T(r) < I, excellent performance can be expected,

wit h deteriorating ag reemient between the exact filter and this approximation
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N when g(e)T(e) exceeds 1. The values of this product for T(c) = 1 and 3 are

both less than 1, and we do in fact see very good performance in this case.

When we reach T(c) = 10, we have that g(c)T(c) = 3 > I and therefore expect

that deviations between the FE/BE filter and the optimal filter will start

to increase. This is indeed the case; comparing the FE/BE with ten time unit

batches to the exact filter for this sample path shows a maximum deviation

-_ of .04 while for T(c) - 31, in which case g(E)T(c) - 9.3, we have a maximum

- deviation of .08, with values consistently biased towards the 0 or I limits.

It is worth noting that although the probabilities generated by the filter

Si"differ slightly, the final conclusions regarding the current state of the

system seldom differ.

IV. FE/BE SIMULATION FOR AGGREGATE WHITE NOISE MODEL

. The final filter approximation, actually a combination of II and III,

was simulated with the same parameter values as III, e = .01, g(e) .3. The

batch times, T(c), were selected to be 3 and 10 (Fig. 8-13). The results are

very similar to those in case III, showing excellent agreement with the exact

filter for T(e)g(E) = 1 (within .01) and somewhat larger differences (maximum

.06) for T(c) = 10 which yields g(c)T(e) = 3. A final run is provided in Fig.

8-14 in which g(e) was decreases to .1 while T(e) remained at 10. In this

case, g(r)T(c) = 1 so we again expect reasonable agreement with the optimal.

Comparing Figs. 8-14 and 8-3 we find that this is indeed the case.

- . 8.3.2 Quantitative Aspects of White Noise Model Simulations

In addition to the simulations based on simple sample paths for which

plots were generated, multiple sample paths for individual parameter values

were used to estimate numerical characteristics of both the exact filter and
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... the aggregate approximation. In particular, the quantities of interest were

measures of the rate at which information is supplied to the filter by the

* -- r measurements and in the case of the approximate filter, the difference between

the approximate output and the optimal output. The first quantity, the infor-

-'" - mation, is defined in Section 7 as p(t) and is the magnitude of the difference

., between the filter output and the output that would appear in steady-state if

no measurements were available. For our four-state model, if we calculate the

- .. . probability of being in the left pair of states (pL(t)) then

7," -Y2
= pL(t) - -(8-38)

Yl+Y2

In Eq. 8-38, yI and Y2 are the left-to-right and right-to-left transition

.. ,,rates assuming the fast transitions have reached steady-state and are given by

equations defined in subsection 6.2.1. For our numerical example, YI = Y2 = I.

The measures of these quantities that we are interested in are their suprema

and their mean square values.

Parameter Values:

In all simulation runs, the parameter values that were selected are given

'V' by Eq. 8-37, and each sample paths had a length of 1000 time units.

Mean Square Results

The first three plots (Figs. 8-15 through 8-17) present the results for

the mean square error of the filter based on the aggregate model and the

O information available in the "exact model." The first graph provides a log-

* "log plot of the mean square value of the information versus the order of c in

the signal power expression. These values are given by Eqs. 8-39 and 8-40.

143

04 "



ALPHATECH, INC.

CD C, CD 0

L44
0

C- +

4-4

00

p0

.0

l~e, 144



ALPHATECH, INC.

* -C

lii CD D

HII 0

0 0 ON

/-4
00* / 0W

00

LdO.
0 0 * 00

.00
0)

0o

2 C~j Ln (

.. 145

%L



ALPHATECH, INC.

C

C>'

00

0 c

-4

UU)

0
* 0) 0)0)0

C3

C C

00
I.u

1464



ALPHATECH, INC.

i T

Mean Square Information = - log f (pl- Y2 dt (8-39)' " "2 -T 1+ Y2
0 -

-- log(g( c))

Power of epsilon in signal = . (8-40)
log(c)

The plot shows a distinct break point in its behavior at g(E) = i/2.

Specifically, for g(e) = ck, k < 1/2, there is very little difference in the

. mean square information rate generated by changing the value of E over several

orders of magnitude. For values of k > 1/2, there is a clear drop in the

'. . ,information available to the filter as e decreases. This supports our anal-

ysis which indicated that g(e) = s1/ 2 is a critical dividing point in the per-

formance of these estimation algorithms.

. ~The second graph plots the logarithm of the mean square error against

N the power of c in g(c). In this case we do not see the threshold effect and

the plots appear linear for the values of c that were simulated. When the two

sets of data are combined and the quotient plotted against 6, we see a change

in behavior at g(e) = ci/2. For g(c) 61/2, the plots are linear, which

slope 1, indicating a linear relationship with c as predicted in Section 7.

For g(c) > ci/2, the error is much larger relative to the available informa-

tion and there is no evidence that the ratio of error to information will

decrease significantly more. This is again in agreement with the theoretical

results of Section 7.

Supremum Results:

0• An identical set of graphs (Figs. 8-18 through 8-20) was prepared for

. estimates of the suprema of the information and the approximation error. The

estimates were calculated using Eqs. 8-41 and 8-42 for the simulation data.
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Isup = max pL(t) (8-41)
u' t Yl+Y2

Esu p = max pL(t) - PL(t) (8-42)
t

*where pL(t) and pL(t) are defined as the exact and approximate probabilitiesI.
respectively. The first graph provides a plot of log (I) versus the power of

*c in g(c). The plot exhibits identical characteristics to that for the mean

square quantity. Comparing plots of maximum error and the quotient of error

and information, we find that they are also very similar. The last plot, the

quotient of the error and the information, exhibits a slope of 1 as in the
b -4

mean square case.

8.3.3 Sample Paths and Probabilities for the Discrete Measurement Case

The discrete measurement simulations were run with three different

filters as described in subsection 8.2. The set of nominal parameter values

that were chosen for the simulation are given in Eq. 4-43.

C = 0.01 (8-43a)

5 X= I + g(c) (8-43b)

X2 = X3 = X4 = 1 (8-43c)
II

X = X2 
= '3 =  4 = 1 (8-43d)

At = 0.1 (8-43e)
I
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. 1. EXACT FILIER

Simulations of the exact filter were run for g(e) ranging frovi 0.03 to

3.0. Prior to the simulations we expected very poor performance for g1(s)

< p:1/2, marginal performance for g(c) = EI / 2 and excellent performance for

* . g(c) > F-/2. The simulations are in fairly close agreement with these con-

jectures. In the first plot (Fig. 8-21) for gl(e) = 0.03, the filter output

appears much like a random walk about the PL = 0.5 line. As gl(e) is increased

to 0.1, or cI / 2, in Fig. 8-22, performance improves with the filter reaching

the correct conclusion regarding the correct state of the system when the sys-

tem remains in that state for times which are O(-l). The filter has little

chance, however, of detecting transitions to the left or right if the duration

of such a sojourn is for a significantly shorter period of time. As the value

of gl(c) is increased to .3, 1, and finally 3 (Figs. 8-23 through 8-25), the

filter output becomes much better, and begins displaying "switching behavior."

In addition, short excursions of the system to the left and right are detected.

3 II. DIFFERENTIAL EQUATION APPROXIMATION TO DISCRETE MEASUREMENT FILTER

The differential equation approximations to the optimal filter was simu-

lated with identical nominal parameter values as in I, but with g(e) = 0.1 and

time intervals for integration of 1, 10 and 50 seconds. In our integration

technique for this case (driven by a jump process), second order effects which

. - are O(g2(c) AK2) were ignored. Since Xi =- Xi-  I for all of our simulations

O(AK) = O(T(E)) and therefore ignoring the second order terms is justified for

g(c) T(c) small. In our simulations, g(e) was 0.1, so for the case of T(C) = I

". (Fig. 8-26), the differential equation should provide a good approximation, for

T(f) = 10 (Fig. 8-27) a marginal approximation, and for T(e) = 50 (Fig. 8-28)
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a poor approximation. Examining the simulation results in these figures

and comparing them to Fig. 8-22, we see that the maximum deviations from opti-

mum are approximately 0.01, 0.04 and 0.12, respectively, confirming our expec-

tations. To provide further support, two additional simulation results are

provided both with T(E) = 10, but in the first case, g(e) = 0.03 for which we

expect good performance, and in the second, gl(c) = 0.3, for which we expect

poor performance (compared to optimal). The plots of the simulations are pro-

"- vided (Figs. 8-29 and 8-30) and support these expectations, with maximum devi-

ations of 0.005 and 0.150 for these sample paths.

Ill. FE/BE STRUCTURE FOR DISCRETE MEASUREMENT MODEL

The FE/BE filter structure was simulated with different lengths of time

used for the batching interval at the front end. For this filter we expect

good performance relative to optimum for cases with g(E) T(E) < 1 and poorer

performance when g(c) T(c) > I. (Note: This is only a rough threshold, a

more precise condition on the parameters is conjectured in subsection 8.3.4.

Therefore, since a value of G(e) = 0.01 was used in this section, we expect

reasonable performance for T(c) being 50 or even higher. This was the case

in the simulations with maximum deviations of .01, .02, .04 from optimal for

T(c) = 1, 10 and 31, respectively (Figs. 8-31 through 8-33). In the final

-;imulation for g(*) = 0.1 (Fig. 8-34), T(c) was set to 75 and therefore we

C. expect that we will see marginal performance (FT(c) = 0.75). The simulations

showed deviations by as much as .08 from optimal but in general agreement was

qni te good. A final simulation with g(f) = 0.3 and T(Ec) = 20 was run to dem-

wos trate the. case where absolute filter performance is fairly good. In this

* i-,' .T( ) ws 0.2 :nd rlative performanc- was very good as well (compare
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8.3.4 Quantitative Simulations for FE/BE Processor in a Noiseless Environment

In a similar manner to subsection 8.3.2, a number of runs were performed

for the filter which approximated the optimal filter in the discrete measure-

ment case by calculating a statistic L(t) in a batch fasion and using this in

a slower set of calculations. The results are provided in Figs. 8-36 to 8-45.

The first two graphs (Figs. 8-36 and 8-37) provide log-log plots of the dif-

ference between optimal and approximate filters versus g(c) for the value of

* T(F), the time between batches, varying from I to 31 units. The value of E

is selected to be 0.1 in the first case and 0.001 in the second. These plots

provide evidence that:

1. The difference between approximation and optimal is linear

-. "in g2(E).

r 12. For T(c) small relative to 6-1, changes in T(c) should have
little effect on relative filter performance.

Figure 8-38 and 8-39 confirm the second point by displaying approximation

error versus T(c) for e ranging from 0.001 to 0.1. Finally, using these

plots, the mean square approximation error was conjectured to be of the

following form:

1 T
lim - f (pL(t) PL(t)) 2 dt Klg 2 (F) (I + K2  T2(c)) (8-44)

. - T-w T
0+-" a+O

where K1 and K 2 are constants. To support the conjecture, log-log plots of

approximation error versus the expression in Eqs. 8-44 with K I  K2  I were

generated for the simulation runs with c .1, .01, .001 (Figs. 8-40 through

8-42). The linearity of the plots and their slope of I support the conJec-

tured formula in Fig. 8-42. In the case of c 0.001, the plots are s-newhat
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nolUlinear, which we believe is only the result of the time interval tor simu-

.1tion, 3000, being short relative to the average slow jump time (1000).

A conjecture regarding the mean squared value of "informat ion' at th

ot:,,1t of the filter is a function of g(E) and c was formulated using Figs.

8-.3 to 8-45. Figures 8-43 and 8-44 plot mean square information versus

anJ g(c) with resulting slopes of -1/2 and 1. These two plots lead to the

c )nJe,.ture of Eq. 8-45.

" T Y2 2 g 2 (,)
r f pL(t) - - dt K3 (8-45)

T+ T Yl+Y2

To provide support for this conjecture, mean square information was
V..

plotted against the expression in Eq. 8-45 with K3 set to 1. The result

- was a linear plot (Fig. 8-45) with slop 1 providing strong support for the

conjecture. If we combine Eqs. 8-44 and 8-45, we can obtain a condition for

the relative error of the approximation to go to zero. First we divide the

equations to obtain Eq. 8-46.

f T PL - pL 2 dt
0

lim K 4 c(I+cT2(C) )  
(8-46)

T- T Y2 2

E+0 f PL dt

0 Yl+Y2

The expression on the right side of Eq. 8-46 approaches 0 as c approaches

0, if T(F) satisfies Eq. 8-47.

T(W) = O(ek) k > -1 (8-47)
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-¢. i In smimary, this section provides conjectures for the conditions on the

orde'r ot t, g() and T(E) required to provide a nonzero quantity or informa-

tion at the tiLter output and relatively unimportant error for thte tront-end/

K bk-e nd ppr oxima t ion to the ideal filter.-'U

* -,

4.4 MONTE CARLO CHARACTERIZATIONS OF BATCH STATISTICS L(t)

In Section 6, a quantity L(t) was introduced for the discrete ieasurement

" model as the likelihood ratio defined earlier by Eq. 6-64.

Pr(x(t), xrt j p(t) on the right)
L(t) = (8-48)

Pr(x(r), Trt p(t) on the left)

This value L(t) is used to perform Bayesian updates in the back-end pro-

cessor using Eq. 6-78. It would be useful to obtain an analytical approxima-

tion to the conditional distributions of L(t) in order to predict performance

characteristics for the estimator structure. As a first step in obtaining

* such a formula, a series of simulations were performed to obtain histograms

fur the value of Z(T(E)), where i(T(E)) in (L(T(c))) and T(c) is the time

interval for each front-end batch. Figures 8-46 and 8-47 show normalized

histograms for Z(T(c)) based on 200 sample paths and T(E) = i and 3, while

Figs. 8-48 through 8-50 show histograms for T(c) = 10, 31, and 100 and using

250 runs. Each figure actually plots two histograms, each normalized to unit

arei, one for o(t) on the left and for for p(t) on the right. The amount of

--. separation between the curves provides a measure of the amount of information

obtained regarding which pair of states the system is in (left or right).

- The results for T(c) = I and 3 are somewhat jagged, but are nearly on top

of each other, and therefore a very small amount of information is obtained in

w
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1 or 3 time units when gl(e) = 0.3. The plots for T(e) = 10, 31 and 100 show

successively more separation between the peaks of the curves. With less over-

lap, there is much less chance of L(t) or L(t) providing "incorrect" informa-

tion about the state to the back end.

A . The appearance of the histograms suggests that a Gaussian approximation

to the conditional distributions might be effective. To obtain such an approx-

imation, we need only calculate the mean and variance of L(t). We start with

the number of jumps K and the residence time in the the top state, assuming

that the process is on the left. If we assume that T(e) is long enough for

4the fast dynamics to reach steady-state, we can calculate:

X2 t
E[Rt(t)] -X + X2

* ~. 2 X1X2 t
VAR[Rt(t) ]

(XI+X2)3

2 XIX 2t
E[K(t)] (XI+X 2 )

4 XlX2(X1 2 +X22 )t

VAR[K(t)] 
= X__ 2_______2_t

(XI+X2 )
3

2 XlX 2 (Xl-X 2)t
COV[Rt(t) K(t)] = )3

Using these equations we can calculate the conditional mean and variance of .

SI given that we are on the left.
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E[XLL] C1 E [R t JL I + - C2 E[KIL] - C4  (8-49)2

VAR[LIL] a C1
2 VAR[RtIL] + C2

2 VAR[KIL] + 2 C1 C2 COV[RtKIL] (8-50)

where CI, C2 , and C4 are defined in the Appendix C (subsection C.2). Using

Eqs. 8-49 and 8-50 and their counterparts if the process is on the right, the

Sapproximate conditional distributions for £(t) were calculated and plotted for

each value of T(c) that was used in the simulations. Comparing these approx-

imations (Figs. 8-51 through 8-55) to the simulations we see there is close

agreement.

8.5 DISCUSSION

The intention of the simulations was to provide evidence supporting both

conjectures and theoretical results from Sections 6 and 7.

For the noise model we note some important features of the simulation
results:

1. For large signal strengths, the estimator behaves in a switch-
like fashion, detecting state transitions shortly after they
occur.

2. For low signal strengths, insufficient information is obtained
between transitions to determine the current state of the system.

3. All the approximate filters approach the performance of the
optimal filter for appropriate parameter ranges.

4. The mean square approximation e.ror of the aggregate model filter
is a factor O(e) smaller than the mean square "information" in
the output of the optimal filter for small c and g(e) < cl/2.

5. For g(c) ; ci/2, the mean square value of the information rate

is relatively unaffected by decreases in the magnitude of e.
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For the discrete measurement model we can make Lhe following general comments:

1. The choice of the magnitude of gj(e), the differences in the
fast transition rates, has a critical effort on filter perfor-

mance which can vary from providing virtually no information
(gi(c) very small) to switch-like performance (gl(e) large).

2. For small values of g(e)T(c) a differential equation on the slow
time scale can be used to approximate the optimal filter with
good accuracy.

.3. The optimal filter can be approximated by a two-stage structure

with front end calculating Rt and K and back end carrying out
prediction and update steps given appropriate conditions on the

system and filter parameters. This condition is conjected to

be that the expression in Eq. 8-46 be small.

4. The conditional distribution of the statistic t(t), the log of

the likelihood ratio defined by Eq. 6-64 can be well-approximated
by a Gaussian distribution. Furthermore, the mean and variance

of the distribution can be approximated by simple functions of

the fast transition rates.
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SECTION 9

CONCLUSIONS

In this report we have described the results of our research on alternate

architectures for nonlinear filtering problems possessing the key features

found in ASW problems. Specifically, we have focused on systems in which a

slowly-varying part of the state influences or modulates the behavior of a

much more quickly varying portion of the state. This fast variable is then

V eobserved, and the ultimate objective is to estimate the slow variables.

As we have discussed, this problem can be cast in the framework of per-

turbation methods. In Section 4 we provide a survey of research on perturbed

estimation problems and discuss the architectural implications of these vari-

ous results. A conclusion of this survey is that there are no previously-

2 Kdeveloped results that are applicable to problems of the type of interest

in this study.

There are several key ideas that we wished to address in this study. One

was to develop an understanding of the relationship between the time scale of

the slow process and the order of the magnitude of the measurement signal-to

N, noise ratio. The second was to investigate alternate suboptimal architectures

and in particular the so-called front-end/back-end architecture commonly used

in ASW systems. In such a system, the front end processes a batch of data to

produce an estimate of the slow variables based on the assumption that the

slow variables are constant over the batch. This sequence of batch-produced

-19pp19



ALPHATECH, INC.

estimates is then fed into a back-end processor that tracks the slow varia-

tions in the slow process. Questions of interest are: when is this archi-

tecture a good one and how long should the batches be when compared to the

natural scales determined by the slow process and by the measurement infor-

- mation rate.

Our investigation of these and several related questions has been carried

out using a relatively simple, four-state Markov process possessing two time

scales. We have used two different measurement models in our study: one in

which poor quality, noise-corrupted measurements of the fast process are

available and one in which we have perfect measurements of the fast process

but the influence of the slow process on the fast one is quite weak. In this

context we have been able to explore at great depth a variety of suboptimal

filter structures and have obtained both theoretical results and convincing
J'. .'

evidence from simulations concerning the asymptotic optimality of several

suboptimal estimators.

In particular, for the problem with poor noise-corrupted estimates:

,-. 1. We have proven an important result showing the asymptotic opti-
mality of a suboptimal slow estimator that essentially averages

out the fluctuations in the measurements due to the fast vari-
ables. This result provides a clear picture of the relationship

between time scales and the asymptotic quality of the measure-
ments. These results, and several stronger sample path proper-

ties, have been demonstrated in our simulations.

S 2. We have implemented front-end/back-end structures both using the
. full, four-state model and the same averaging strategy described

:.,::. in 1. Simulations have shown that both of these estimators

achieve asymptotically the same performance as the optimal filter.

In addition, these results suggest particular asymptotic formulas
for the length of the time interval used in the front-end batch

processor.

S -. -For the case perfect fast measurements but weak slow-to-fast coupling:
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1. We have demonstrated via simulations that an extremely slow
integration of the optimal estimation equations -- which is
equivalent to a simple front-end counter and interruptable clock
followed by a slow back-end processor -- performs asymptotically
as well as the optimal.

2. We have also studied the standard front-end/back-end algorithms
for this problem. Our extensive simulations provide extremely
convincing evidence supporting our conjectures concerning asymp-
totic optimality and the relationships among the orders of mag-
nitude of time scales, slow-to-fast couplings, and front-end
batch lengths.

The results presented in this report not only are of significance in

their own right, but they also provide clear direction for further work: in

the theoretical verification of the numerous conjectures developed through

our simulations; in developing higher-order approximations that indicate the

value of slightly more complex estimators; and in extending these ideas to

continuous-state nonlinear systems.

19
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APPENDIX A

SOLUTION OF THE WAVE EQUATION

Pressure in a three-dimensional homogeneous fluid with sound speed c

satisfies the wave equation

1 . 2u _ V2 u = f(x,t) (A-1)

c 2  a t2

,a

where f(xt) is the source field. We are interested in the case of a moving

point source at xT(t) for which f(x,t) is given by

.' ~ f(x,t) = 4w6(x - xT(t))-YT(t) (A-2)

i where 6 is the three-dimensional Dirac delta function and yT(t) is the source

signal. The solution of Eq. A-I can be expressed in terms of Greens function

as an integral

u(xpt) = c/dE (A-3)i 4. I x- l

4

*9 Substituting Eq. A-2 in Eq. A-3 gives

..6 (-xT - " YT t

u(x,t) = ) dFE (A-4)

To integrate Eq. A-4 we need to change variables from to defined by

A-1
;i
! .
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X = -- xT  t • (A-5)
c

I Note that the Jacobian of the transformation is

3;) kT (x-E)T
13 (A-6)

C Ix-El

where the superscript T in Eq. A-6 denotes vector transposition and 13 denotes

the 3x3 identity matrix. The determinant of the Jacobian is needed to trans-

form variables in the integral and is given by

<i-lx-OldeTt ~ (A-7)

The integcal in Eq. A-4 becomes

<iT,X-> 
yt IX-I

-/ -Ix....c 6(e) dC (A-8),.- Ix-El J x- j

where in Eq. A-8 satisfies Eq. A-5. Thus, we get

V 1 ___

<iT,X-> y t
u(Xt) - j c (A-9)

41P.

* . where is chosen to satisfy
'

0= - xT t (A-IO)

A-2
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Letting

p T= (A-11)

we see that

CT =1x-xT(t-T)I (A-12)

=1 <iT,x->
1I l - I.XE (A-13)

and finally

Y(t-T)

u(x,t) = CT (-) .(A-14)

A- 3
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APPENDIX B

FILTERING EQUATIONS FOR PARTIALLY-OBSERVED

FINITE-STATE CONTINUOUS-TIME MARKOV PROCESS

,' J B.1 PROBLEM FORMULATION AND FILTER EQUATIONS

S-' Suppose that x(t) is a finite-state continuous-time Markov process and

define the observation process y(t) by

y(t) = h(x(t)) (B-1)

We will derive a stochastic differential equation for the conditional proba-

" :.bility wt( ) defined by

" t(E) = Pr{x(t)=&Iy(T),O>v>t} } (B-2)

Let x( I ') denote the transition rate from &' to &. That is,

Pr{x(t+A)=Ejx(t)='} ; + A.X(6I&') + o(A) , (B-3)

where A>O, 6w is the Kronecker delta function, and o(A) is an error term

that tends to 0 faster than A as A tends to O.

Assume that x(t) is a version of the Markov process which has right

S -" continuous sample paths and which has, at most, a finite number of discon-

-, ..- tinuities in any finite time interval. Let Jt denote the counting process

associated with y. That is, Jt is the number of discontinuities of y in the

i interval [O,t].

B-1
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We will show that vt( ) satisfies the stochastic differential equation

t t

ft(E) = i0(E) + f Fs ds + f Cs dJs  (B-4)

0 0

.1*

where the first integral is Lebesgue and the second is Stieltjes. If Tk, 14k,

are the transition times of the y process (and therefore also of the counting

process J), then the Stieljes integral in this case is simply

t

G s dJs = y GTk. (B-5)

0 Tk~t

The integrands Ft and Gt are defined as follows.I.

Ft = 6h(E)y(t).[E X(WI')wt(&') - t()Z X(y(t)i1')wt(V')1 (B-6)

where

X(y(t) I') = X(E"1 ') (B-7)

h(t")=y(t)

Gt = 6h(E)y(t) * - 7t-(&) (B-8)
E X(y(t) 1 )7t-(w)

where

t-(W) = lim WS(W) • (B-9)

s~t

A special case of this general result is when x(t) has two components

x(t) = (x1 (t),x 2 (t)) (B-10)

B-2
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and

y(t) = h(x(t)) = x2 (t) (B-Il)

NIn this case the stochastic differential equation for

"ft(&l) = Pr{xl(t)=EJY( T ),O4 T t) (B-12)

is the same as (B-4) with F and G given by

Ft = E l - t( ) • (y(t)I ,y(t))1t( j) (B-13)

Gt =- t-( El) (B-14)

B.2 OUTLINE OF PROOF OF FILTERING EQUATIONS

A direct proof of these results depends on showing that (1) it( ) has

a derivative given by Ft at each time t at which Jt does not jump and that

(2) at jump times t, wt(E) satisfies

-t(E) = Gt + nt-(E) • (B-15)

For jump times t, Eq. B-15 follows directly from Bayes rule for a finite-state

Markov chain. We will sketch how to prove (i) in the rest of this section.

Assume that ts and define Ast as

As t = I if Jt-Js = 0
(B-I16)

= 0 if Jt-Js > 1

B-3
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Define *s as a function of sample paths of y as

s(Y)(T) = Y(T) for T<t
(B-17)

= y(t) for T>t

Suppose that f is Yt measurable (Yt = o{y(T),O<T4t}). Then f'¢s is Ys mea-

surable and

f-As,t = (f. s)-As,t • (B-18)

Therefore, letting f = nt(C), we get

wt(E)-As't = (7t(E)'s)-Ast (B-19)

which implies that wt(E).As,t is Ys V o{As,t} measurable. Thus,

Rt()-As,t = E[7t()liYs,Ast}.As, t" 
(B-20)

= Pr{x(t)= JYs,Ast}.As,t

Note that

- Prtx(t)=E,As,t=ltYs}
Pr{x(t)=EiYs,-st=l} = (B-21)

Pr{As,t=llYs}

where

-i Pr{x(t)=C,As,t=lJYs} = E Pr{x(t)=C,A s t=llx(s)=E'}1.s(C') (B-22)

and

Pr(Astlys} = E Pr(As,t=lx(s)=C'}'is( ') • (B-23)

6 Let Bs,t denote the event that there is more than one jump of x in the inter-
C-

.-. val (s,t], and let Bc be the complementary event that there is, at most, one[ * a. s't

one jump in (s,t]. Then we have the relationships

B-4
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6 *Prjx(t)= ,Bc jx(s)=V'}
h(C~hEl) , t(B-24)

and

-: &6h(E)h(Et)-Pr{x(t)= Ix(s)=C' I
(B-25)

> rxt=&A-~jxs='

It follows from Eq. B-24 and B-25 that

11()(1-rxt=j~)Cj- Prxt=,stlxs=}

(B-26)

4Pr{Bs,tlx(s)=V}

Note that

Pr{Bstjx(s)=V1 =O(t-s) -(B-27)

Puttng qs.B-27 and B-26 together with Eq. B-3 gives

Pr{x(t)=C,As5 =1lx(s)=E'} = 6h(&)h(E')*[ 6 &&' + (t-s).XC(&')] (B-28)

+ O(t-s)

Using Eq. B-28, we can derive the approximations

Prjx(t)= ,Ast=il~Ys = 6n(0)Y(sY*[TsC(0B-

+ ),Wjg'.irs(c').(t-S) + o(t-s)

4 and

Pr{As,t=iIYs} 1 + E E (~)is~)(-) (-0

+ o(t-s)

From Eqs. B-21, B-29, and B-30, we get

B- 5
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Prtx(t)=&IYs,Ast=l}

-
6h(O)y(s) * ['rsC) + E X(& I ) ..as( '(t-s) (B-31)

h(E' )=y(s)

- E ("'r('.r()(-) + O(t-s)

h(")h&'=ys

Note that 7rs(C) = 0 unless h(&) = y(s). Thus,

p. ys'F(& sO(-2

and Eq. B-21 can be expressed

Prtx(t)= IYs,Ast=l1

0 - 1Ts(E) + 6h(E)y(s) *I xg')7('.(-)(B-33)
h( )=y( s)

WSC) ITS -( - + o(t-s)

From Eq. B-20,

7()- ws& [Prjx(t)=EIY,,AS t='l1 - nS(C)].AS,t
(B-34)

Iv + [1rt(E) - r(&)]*(l -A 5 ,t)

~j .- and it follows from Eq. B-33 and the definition of Fs that

irt( ) - Trs( ) = Fs.(t-s) + o(t-s)

P ~+ [irt(g) - wrs(O]*(I As,t) (-5

Finally note that because y is right continuous,

I-Ast
lim =0 (B-36)
t4+S t-s

B-6
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is true for all s. If t is not a discontinuity of y, then it is also true

that

l-As, t

rlim - 0 (B-37)
stt t-s

Note that nt, ns, and Fs are uniformly bounded. Using this fact together with

Eqs. B-36 and B-37, it follows that Eq. B-34 implies nt is continuous at t if

t is not a discontinuity of y. Consequently, Ft is also continuous at such

times t, so that

lim Fs = Ft (B-38)
s+t

in Eq. B-34. It follows that 7t is continuously differentiable at t with

derivative

- #Tt(O) - rs(O)

lim = Ft . (B-39)
s+t t-s

B.3 EXAMPLE

As example, consider the four-state Markov process with state space

{O,l}X{0,l1} and transition rates given by (see Fig. B-l):

t x(0,lI0,O) = a, X(O,0o0,l) = a'

x(l,00,O) = a, x(0,0l,O) =

(B-40)
X(Ilf1,o) a, X(l,O[ll) = a'

and
,_. X(0,010,0) =

X(l,0I,0) =

(B-41)

x(I, I) =-

X(o,lIo,l) = -(a'+y)

re B- 7
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Th 4l&,, are given by

X(OjO,O) =A(O11,O) = C (B42

X(OIO,1) =X(Oll,l) =a,

- ~~~~~(l1O,1)= (11)=-'

4,.. In this example, nt(El) satisfies a linear differential equation with coeffi-

clients that switch randomly with y(t). That is,

wt(O) '-(8+ 0')7t(O) when y(t) 0 (B-43)

~ and

7ft(O) =y' ( y + y')wrt(O) when y(t) 1 .(B-44)

Let 60 and 61 denote the equilibrium points of the individual differential

4 equations (Eqs. B-43 and B-44), namely

60=8+ 8'(B-46)

During an interval of time (Tk,rk+l] when y(t) i, the probability lWi(i)

approaches 01 exponentially. If 60 * 61, then irt(O) eventually becomes

*trapped between 00 and 81 and oscillates randomly as shown in Fig. B-2. If

0= 61, then wt(0 ) approaches 61 in the limit. If 88' iy' are very

large compared to a, at', then the oscillations approach the limit

60.[1-y(t)] + 6Opy(t) .(B-47)

B-8
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0 10

R-5464

Figure B-1. State Transition Diagram

7t (0)

0

12 3 4 5 6

y=o y=l Y=O Y=1 y=O y=l

R-5465

Figure B-2. Sample Path Behavior of lrt(O)

B- 9
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B.4 REGULAR MEASUREMENT MODEL

Suppose that xl(t) is itself a Markov process and x2 (t) is a process that

depends on x1 (t) in such a way that x(t) = (xl(t),x 2(t)) is a Markov process.

Furthermore, suppose that for almost all sample paths of x(t), x1(t) and x2 (t)

do not jump simultaneously. Then the transition rate X for the joint process

yx has the following form

;% (B-48)

%: 6E 2 .x ( qt) + 6 q (EI -Y & I
it

where X1 is the transition rate of xl, and X2 is a transition rate for a

process x2 if is held constant, that is

S(2 , 0 if 2 (B-49)

Z AC 2 1 ,$2 ) = 0 (B-SO)

for each 1, 2 To see that Eq. B-48 is true note that if x,(t) and x2 (t)

do not have simultaneous jumps, then X can be written in the form

~(B-51)

= 2 1) + i a (

2 22

Note that

Z 0 =  x 1( , 2 I i, 2) (-
I, 2 (B-52)

-; - Z al( l[, ) + a P

B-10
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Def ine a, a2 as

Then X can be written as

(B-55)

~. where

~ i~I~,)=0 .(B-56)

Summing Eq. B-55 over ~2gives

= (~'2 i')=a 1 ( 1 ~, 2  (B-57)

Substituting Eq. B-51 in Eq. B-55 gives the desired expression (Eq. B-48).

Equation B-50 is just Eq. B-56, and Eq. B-49 follows fromi Eq. B-48. Note

that Eq. B-48 can al.so be expressed by saying that the infinitesimal generator

A of x given by

22

has the form

= l(,~)~)+ A(If l,)2)(B-59)

* B-l1
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. where A1 is the infinitesimal generator corresponding to XI and A2(El) is the

infinitesimal generator corresponding to X2(Fl,'I~l,')"

We will call Eq. B-48 the regular measurement model. It is the discrete-

state version of the following measurement model typically used for diffusion
,. processes:

dx I = f(xl)dt + dw (B-60)

dx2 = h(xl,x 2 )dt + dv (B-61)

Note that the regular measurement model is only a special case of the

-1 . partially-observed Markov process formulated in Eq. B-I. In some cases, it

will be necessary to consider the more general model (e.g., the limit of a

I'" parameterized family of regular models need not be regular).

[ :The finite-state filtering equation for the special measurement model

, (Eq. B-48) is given by

: Ft = + Y( i)1rt 1 ) +))wt()

- [. . (B-62)

- wt(&l) Z A2(y(t)1Ey(t))ft( P)

Gt = t- t-( ) (B-63)

We are particularly interested in singular-perturbation problems where

the observation process y = x2 is speeded up by a factor of . This gives

(B-64)

B-12
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" .. The singularly perturbed filtering equations are

E (B-65)

- * it(l • E X2 (y(t)I ly(t))7t(Yj)

' .: X2(Yt~l~lY~-) )7t_(

Gt = - t-(El) (B-6b)
",,.X £ 2(Y(t)1E!,y(t-))wt_(" )

B.5 UNNORMALIZED FILTERING EQUATIONS

In nonlinear filtering for diffusion processes, Zakai's equation for

an unnormalized conditional density is linear in the density and easier to

analyze than the nonlinear equation for the conditional density itself.

There is an analogous equation for an unnormalized conditional probability

distribution in the finite-state continuous-time filtering problem. Consider

the general problem formulated in Eq. B-I. Let qt(E) be the solution of the

following stochastic differential equation.

dqt(E) = ['h(E)y(t) • E X( JE')qt( ')].dt
(B-67)

',

+ [6h(&)y(t) I X(Ej&')qt -(E') qt-(&)]'dJt

Define qt to be the normalization factor

qt = E qt(E) (B-68)

IE

Then the conditional density it( ) is
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), qt(C)

= • (B-69)
qt

It is not hard to show that Eq. B-69 is true for all t provided that it is

true initially at t=O. At a jump time t = Tk

~~~~qt(E) =  6h(&)y(t) " E ( l ') t ( ' (B-70)

so that if Eq. B-69 is true for t<zk, it is clearly true at Tk (that is,,Eq.

B-70 preserves the relation (Eq. B-69) through the jump). In between jump

times, Tk 4 t < Tk+l, qt(&) and qt satisfy the ordinary differential equations

•qt(E) = 6h( )y(t) ° £  ( ')t ')(B-71)

and

qt = 
£ X(y(t)JE')qt(C') (B-72)

It follows that the quotient qt(F)/qt satisfies the same equation as 1t(F) in

between jump times, namely

~t(O) = 6h( )y(t) " [E, (W&')nt(W )

(B-73)

- t( ) " x(y(t)JC1)1t( ') ]

Thus, if Eq. B-69 is true at t = Tk, it will remain true throughout the

interval Tk < t < Tk+l-

*O For the measurement model given by Eq. B-I, the unnormalized distribu-

.- tion satisfies the equation

',B1
"p.
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. dq t( ,) = [E X( l,y(t)J1, y(t))qt(&{) ].dt

.(B-74)

For the regular measurement model, the unnormalized distribution satisfies

the equation

dqt t() = [r. X)t +2 ) ,y(t))qtC 1)].dt

(B-75)

+ [X2 (y(t)JIl,y(t-))qt-( l) - qt_( l)]-dJt

For the singularly-perturbed problem we have two choices: either to use the

unnormalized equation (Eq. B-75) obtained by replacing X2 with + X2 or to

use a somewhat different version derived directly from Eqs. B-65 and B-66

in the same way as Eq. B-67 was derived. Note that there are many possible

unnormalized distributions, and no one choice need be uniquely the best. We

present the different version because it appears to give better scaling in

the jump term.

i [£ Xl(x l& )qt( , ) +I 2Yt)~,,Y(t))qt(cl)].dt

(B-76)

.+ [X2(Y(t)J&lY(t-))qt-(&l) - qt-(&l)]'dJt

Note that some care needs to be taken in analyzing the asymptotic behavior of

V6 by analyzing an unnormalized distribution such as qt in Eq. B-76. If qt

t

has leading order magnitude i(c), then we need to analyze qt to higher order,

namely o(*(c)), in order to say something useful about the asymptotics of x.
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APPENDIX C

DECISION PROBABILITIES FOR THE HYPOTHESIS TEST OF EQS. 6-57 AND 6-58

N We are concerned here with analyzing the performance of the decision rule

specified by Eqs. 6-57 and 6-58. For simplicity we drop the subscript k and

we assume that x(O) = 1 (analogous expressions can be developed if x(O) = 0).

Taking logarithms of Eqs. 6-57 and 6-58 and simplifying, we see that an equiv-

alent form for this decision rule is for K even

mk = R

1>
C1 R + - C2 K C4  (C-la)

2 <

a m = Lme

while for K odd it is

mk =R

C1 R + - C2 (K-1) + C3  C4 (C-lb)
2 <

mk  L

" whe re

Cwh (-a) g(c) , C2 = log I + )(i +

(C-2)

C3 = log + "I , C4 = Og(r) T(c)

C-1
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The key to the performance of Eq. C-1 is then the joint distribution *for

R and K under each hypothesis (i.e., p(t) on the left or p(t) on the right).

For the case of p(t) on the left

p(R, K1l) = 1 e('2Xl)R e-'2 T(s:)

p(R, K=2) = (XIR)X2  e(2'Re-X2 T( E)

(C-3)

p(R, K=2M-l) = (XIR) M A2(T(e)-R)](Ml1) A (X2-xlReX2Tc

MI (Ml) 2 1)X Te

p(R, K=2M) XIMl) e(2'lR eAX2 T(e)

where the last two expressions for for M =2,3 .

To illustrate the nature of the computations, suppose that C1, C2 > 0.

Then

M=O Pr(R C 2  ,K 2M) ) + V- Pr(R CCC

- I f p(R,2M)dR + I f p(R,2M)dR
M=O 0 M=N1(E)+l 0

N3(c) T( E) N4(C) Y2(0)
+ I f p(R,2M+l)dR + I f p(R,2M+1)dR

M=0 0 M=N3(c)+l 0

(C-4) I

c- 2

L4
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where

C4 -Cl T(c) C4

C2= C2

N 3 c)LLG3C (Ejj~ N4(c) L](C-5)
C4 -C2 M C4 -C3 -C2 M

yl ' Y2(c)
CI CI

FIN
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